Advertisement

A note on homogeneous Sobolev spaces of fractional order

  • Lorenzo BrascoEmail author
  • Ariel Salort
Article
  • 22 Downloads

Abstract

We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible.

Keywords

Nonlocal operators Fractional Sobolev spaces Real interpolation Poincaré inequality 

Mathematics Subject Classification

46E35 46B70 

Notes

Acknowledgements

The first author would like to thank Yavar Kian and Antoine Lemenant for useful discussions on Stein’s and Jones’ extension theorems. Simon Chandler-Wilde is gratefully acknowledged for some explanations on his paper [11]. This work started during a visit of the second author to the University of Ferrara in October 2017.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)Google Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)Google Scholar
  3. 3.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press, Boston (1988)zbMATHGoogle Scholar
  4. 4.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)zbMATHGoogle Scholar
  5. 5.
    Bourgain, J., Brezis, H., Mironescu, P.: Another Look at Sobolev Spaces. Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)zbMATHGoogle Scholar
  6. 6.
    Bramble, J.H.: Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory. Math. Comp. 64, 1359–1365 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16, 419–458 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brasco, L., Cinti, E.: On fractional Hardy inequalities in convex sets. Discrete Contin. Dyn. Syst. 38, 4019–4040 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brasco, L., Santambrogio, F.: A sharp estimate à la Calderón–Zygmund for the \(p\)-Laplacian. Commun. Contemp. Math. 20, 1750030, 24 (2018)CrossRefGoogle Scholar
  10. 10.
    Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Unione Matematica Italiana, Cham, Bologna (2016)Google Scholar
  11. 11.
    Chandler-Wilde, S.N., Hewett, D.P., Moiola, A.: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples. Mathematika 61, 414–443 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, 90–113 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deny, J., Lions, J.-L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5, 305–370 (1954)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48, 575–588 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dyda, B., Vähäkangas, A.V.: Characterizations for fractional Hardy inequality. Adv. Calc. Var. 8, 173–182 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  18. 18.
    Franzina, G.: Non-local torsion functions and embeddings. Appl. Analyis (2018).  https://doi.org/10.1080/00036811.2018.1463521
  19. 19.
    Gigli, N., Mosconi, S.: The abstract Lewy–Stampacchia inequality and applications. J. Math. Pures Appl. 104, 258–275 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)zbMATHGoogle Scholar
  21. 21.
    Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 181. Springer, New York (1972)Google Scholar
  23. 23.
    Maz’ja, V.G.: Sobolev Spaces. Translated from the Russian by T. O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer, Berlin (1985)Google Scholar
  24. 24.
    Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Translated from the Russian by John M. Danskin, Jr. Die Grundlehren der Mathematischen Wissenschaften, Band, vol. 205. Springer, New York (1975)Google Scholar
  26. 26.
    Ponce, A.: A new approach to Sobolev spaces and connections to \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
  28. 28.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, UMI, Berlin, Bologna (2007)Google Scholar
  29. 29.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  30. 30.
    Triebel, H.: Theory of Function Spaces. III. Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)zbMATHGoogle Scholar
  31. 31.
    Triebel, H.: Theory of Function Spaces. II. Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)Google Scholar
  32. 32.
    Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)CrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di FerraraFerraraItaly
  2. 2.Departamento de MatemáticaFCEN Universidad de Buenos Aires and IMAS, CONICETBuenos AiresArgentina

Personalised recommendations