Advertisement

Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc

  • Filippo Bracci
  • Manuel D. Contreras
  • Santiago Díaz-Madrigal
  • Hervé Gaussier
Article

Abstract

We study the backward invariant set of one-parameter semigroups of holomorphic self-maps of the unit disc. Such a set is foliated in maximal invariant curves, and its open connected components are petals, which are, in fact, images of Poggi-Corradini’s type pre-models. Hyperbolic petals are in one-to-one correspondence with repelling fixed points, while only parabolic semigroups can have parabolic petals. Petals have locally connected boundaries, and except a very particular case, they are indeed Jordan domains. The boundary of a petal contains the Denjoy–Wolff point, and except such a fixed point, the closure of a petal contains either no other boundary fixed points or a unique repelling fixed point. We also describe petals in terms of geometric and analytic behavior of Koenigs functions using divergence rate and universality of models. Moreover, we construct a semigroup having a repelling fixed point in such a way that the intertwining map of the pre-model is not regular.

Keywords

Semigroups of holomorphic functions Backward orbits Petals Koenigs function Holomorphic models 

Mathematics Subject Classification

Primary 37C10 30C35 Secondary 30D05 30C80 37F99 37C25 

References

  1. 1.
    Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Rende (1989)MATHGoogle Scholar
  2. 2.
    Arosio, L.: Canonical models for the forward and backward iteration of holomorphic maps. J. Geom. Anal. 27(2), 1178–1210 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arosio, L., Bracci, F.: Canonical models for holomorphic iteration. Trans. Am. Math. Soc. 5(368), 3305–3339 (2016)MathSciNetMATHGoogle Scholar
  4. 4.
    Berkson, E., Porta, H.: Semigroups of holomorphic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)CrossRefMATHGoogle Scholar
  5. 5.
    Bracci, F.: Fixed points of commuting holomorphic mappings other than the Wolff point. Trans. Am. Math. Soc. 355(6), 2569–2584 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bracci, F., Gumenyuk, P.: Contact points and fractional singularities for semigroups of holomorphic self-maps in the unit disc. J. Anal. Math. 130(1), 185–217 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Topological invariants for semigroups of holomorphic self-maps of the unit disc. J. Math. Pures Appl. 107(1), 78–99 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56. Cambridge University Press, Cambridge (1966)CrossRefGoogle Scholar
  9. 9.
    Contreras, M.D., Díaz-Madrigal, S.: Analytic flows on the unit disk: angular derivatives and boundary fixed points. Pac. J. Math. 222, 253–286 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: Fixed points and boundary behavior of the Koenigs function. Ann. Acad. Sci. Fenn. Math. 29, 471–488 (2004)MathSciNetMATHGoogle Scholar
  11. 11.
    Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98, 125–142 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cowen, C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Am. Math. Soc. 265, 69–95 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cowen, C.C.: Commuting analytic functions. Trans. Am. Math. Soc. 283, 685–695 (1984)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  15. 15.
    Elin, M., Shoikhet, D.: Linearization Models for Complex Dynamical Systems. Topics in univalent functions, functional equations and semigroup theory. Birkhäuser, Basel (2010)MATHGoogle Scholar
  16. 16.
    Elin, M., Shoikhet, D., Zalcman, L.: A flower structure of backward flow invariant domains for semigroups. C. R. Math. Acad. Sci. Paris 346(5–6), 293–296 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elin, M., Shoikhet, D., Zalcman, L.: A flower structure of backward flow invariant domains for semigroups. Ann. Acad. Sci. Fenn. Math. 33, 3–34 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Gumenyuk, P.: Angular and unrestricted limits of one-parameter semigroups in the unit disk. J. Math. Anal. Appl. 417, 200–224 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Heins, M.H.: A generalization of the Aumann–Carathodory “Starrheitssatz”. Duke Math. 8, 312–316 (1941)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Poggi-Corradini, P.: Angular derivatives at boundary fixed points for self-maps of the disk. Proc. Am. Math. Soc. 126, 1697–1708 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Poggi-Corradini, P.: Canonical conjugation at fixed points other than the Denjoy–Wolff point. Ann. Acad. Sci. Fenn. Math. 25(2), 487–499 (2000)MathSciNetMATHGoogle Scholar
  22. 22.
    Poggi-Corradini, P.: Backward-iteration sequences with bounded hyperbolic steps for analytic self-maps of the disk. Rev. Mat. Iberoam. 19(3), 943–970 (2003)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Poggi-Corradini, P.: Iteration of analytic self-maps of the disk: an overview. Cubo 6(1), 73–80 (2004)MathSciNetMATHGoogle Scholar
  24. 24.
    Pommerenke, Ch.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)MATHGoogle Scholar
  25. 25.
    Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  26. 26.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)CrossRefMATHGoogle Scholar
  27. 27.
    Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer Academic Publishers, Dordrecht (2001)CrossRefMATHGoogle Scholar
  28. 28.
    Siskakis, A.G.: Semigroups of composition operators and the Cesàro operator on \(H^{p}(D)\). Ph. D. Thesis, University of Illinois (1985)Google Scholar
  29. 29.
    Siskakis, A.G.: Semigroups of composition operators on spaces of analytic functions, a review. Contemp. Math. 213, 229–252 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.Camino de los Descubrimientos, s/n Departamento de Matemática Aplicada II and IMUSUniversidad de SevillaSevilleSpain
  3. 3.CNRS, IFUniv. Grenoble AlpesGrenobleFrance

Personalised recommendations