Advertisement

Existence criteria for special locally conformally Kähler metrics

  • Nicolina Istrati
Article
  • 93 Downloads

Abstract

We investigate the relation between holomorphic torus actions on complex manifolds of locally conformally Kähler (LCK) type and the existence of special LCK metrics. We show that if the group of biholomorphisms of such a manifold (MJ) contains a compact torus which is not totally real, then there exists a Vaisman metric on the manifold, generalising a result of Kamishima–Ornea. Also, we obtain a new obstruction to the existence of LCK structures on a given complex manifold in terms of its automorphism group. As an application, we obtain a classification of manifolds of LCK type among all the manifolds having the structure of a holomorphic principal torus bundle. Moreover, we show that if the group of biholomorphisms contains a compact torus whose dimension is half the real dimension of M, then (MJ) admits an LCK metric with positive potential. Finally, we obtain new non-existence results for LCK metrics on certain products of complex manifolds.

Keywords

Locally conformally Kähler metric Vaisman metric Torus action Lee field 

Mathematics Subject Classification

53A30 53C25 53B35 

Notes

Acknowledgements

I am grateful to Andrei Moroianu for his encouragement and valuable suggestions that improved this paper. Also I thank Paul Gauduchon for pointing out an error in a preliminary version of the paper.

References

  1. 1.
    Belgun, F.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blanchard, A.: Espaces fibrés kähleriens compacts. C. R. Acad. Sci. Paris 238, 2281–2283 (1954)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bredon, G.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics 46. Academic Press, New York-London (1972)Google Scholar
  4. 4.
    Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry, Progress in Mathematics, vol. 155. Birkhäuser Boston Inc, Boston (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gauduchon, P.: La classe de Chern pluriharmonique d’un fibré en droites. C. R. Acad. Sci. Paris Sér. A-B 282(9), 479–482 (1976). AiiMathSciNetzbMATHGoogle Scholar
  6. 6.
    Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris 285, 387–390 (1977)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier 48, 1107–1127 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goto, R.: On the stability of locally conformal Kähler structures. J. Math. Soc. Jpn. 66(4), 1375–1401 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Inoue, M.: On surfaces of class \(VII_{0}\). Invent. Math. 24, 269–310 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Istrati, N.: A characterisation of toric LCK manifolds, preprint (2017). arXiv:1612.03832 (to appear in J. Symplectic Geom.)
  11. 11.
    Kamishima, Y., Ornea, L.: Geometric flow on compact locally conformally Kähler manifolds. Tôhoku Math. J. 2, 201–221 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    de León, M., López, B., Marrero, J.C., Padrón, E.: On the computation of the Lichnerowicz–Jacobi cohomology. J. Geom. Phys. 44(4), 507–522 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Madani, F., Moroianu, A., Pilca, M.: On toric locally conformally Kähler manifolds. Ann. Glob. Anal. Geom. 51, 401–417 (2017)CrossRefzbMATHGoogle Scholar
  14. 14.
    Moroianu, A., Moroianu, S.: On pluricanonical locally conformally Kähler manifolds. IMRN 14, 4398–4405 (2017)Google Scholar
  15. 15.
    Moroianu, A., Moroianu, S., Ornea, L.: Locally conformally Kähler manifolds with holomorphic Lee field, preprint (2017). arXiv:1712.05821
  16. 16.
    Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier 55, 1291–1300 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ornea, L., Parton, M., Vuletescu, V.: Holomorphic submersions of locally conformally Kähler manifolds. Annali di Matematica 193, 1345–1351 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ornea, L., Verbitsky, M.: Locally conformal Kähler manifolds with potential. Math. Ann. 248, 25–33 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ornea, L., Verbitsky, M.: Automorphisms of locally conformally Kähler manifolds. Int. Math. Res. Not. 2012(4), 894–903 (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ornea, L., Verbitsky, M.: Positivity of LCK potential. J. Geom. Anal. (2018).  https://doi.org/10.1007/s12220-018-0046-y zbMATHGoogle Scholar
  21. 21.
    Otiman, A.: Locally Conformally Symplectic Bundles, preprint (2015). arXiv:1510.02770 (to appear in J. Symplectic Geom.)
  22. 22.
    Otiman, A.: Morse–Novikov cohomology of locally conformally Kähler surfaces. Math. Z. 289, 605–628 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pilca, M.: Toric Vaisman manifolds. J. Geom. Phys. 107, 149–161 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tricerri, F.: Some examples of locally conformal Kähler manifolds. Rend. Sem. Mat. Univers. Politecn. Torino 40, 81–92 (1982)zbMATHGoogle Scholar
  25. 25.
    Tsukada, K.: Holomorphic maps of compact generalized Hopf manifolds. Geometriae Dedicata 68, 61–71 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tsukada, K.: The canonical foliation of a compact generalized Hopf manifold. Differ. Geom. Appl. 11, 13–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vaisman, I.: On Locally and Globally Conformal Kähler Manifolds. Trans. Amer. Math. Soc. 262(2), 553–542 (1980)zbMATHGoogle Scholar
  28. 28.
    Vaisman, I.: Generalized Hopf manifolds. Geometriae Dedicata 13, 231–255 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vaisman, I.: Locally conformal symplectic manifolds. Internat. J. Math. Math. Sci. 3, 521–536 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Verbitsky, M.S.: Theorems on the vanishing of cohomology for locally conformally hyper Kähler manifolds, (Russian) Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 64–91; translation. Proc. Steklov Inst. Math. 246, 54–78 (2004)Google Scholar
  31. 31.
    Vuletescu, V.: LCK metrics on elliptic principal bundles, preprint (2010). arXiv:1001.0936

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication [August/2018]

Authors and Affiliations

  1. 1.Institut de Mathématiques de Jussieu - Paris Rive Gauche, UFR de MathémathiquesUniversité Paris Diderot - Paris 7Paris Cedex 13France

Personalised recommendations