Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 197, Issue 4, pp 1247–1268 | Cite as

Teichmüller theory and collapse of flat manifolds

  • Renato G. BettiolEmail author
  • Andrzej Derdzinski
  • Paolo Piccione
Article

Abstract

We provide an algebraic description of the Teichmüller space and moduli space of flat metrics on a closed manifold or orbifold and study its boundary, which consists of (isometry classes of) flat orbifolds to which the original object may collapse. It is also shown that every closed flat orbifold can be obtained by collapsing closed flat manifolds, and the collapsed limits of closed flat 3-manifolds are classified.

Keywords

Flat manifolds Flat orbifolds Teichmueller space Moduli space Collapse Gromov–Hausdorff convergence 

Mathematics Subject Classification

22E40 32G15 53C15 53C24 53C29 57M60 57R18 58D17 58D27 

Notes

Acknowledgements

It is a pleasure to thank Alexander Lytchak, John Harvey, Karsten Grove, and Curtis Pro for suggestions regarding equivariant Gromov–Hausdorff convergence, Burkhard Wilking for comments on realizing flat orbifolds as limits of flat manifolds, and Andrzej Szczepański for conversations about the holonomy representation of flat manifolds. Part of this work was done during a visit of the first named author to the Max Planck Institute for Mathematics in Bonn, Germany, and of the third named author to the University of Notre Dame, USA; they would like to thank these institutions for providing excellent working conditions. The second and third named authors are partially supported by a FAPESP-OSU 2015 Regular Research Award (FAPESP Grant: 2015/50315-3).

References

  1. 1.
    Alexandrino, M.M., Bettiol, R.G.: Lie Groups and Geometric Aspects of Isometric Actions. Springer, New York (2015)CrossRefzbMATHGoogle Scholar
  2. 2.
    Auslander, L., Kuranishi, M.: On the holonomy group of locally Euclidean spaces. Ann. Math. 65(2), 411–415 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baues, O.: Varieties of discontinuous groups. In: Crystallographic Groups and Their Generalizations (Kortrijk, 1999), vol. 262 of Contemporary Mathematics. American Mathematical Society, Providence, pp. 147–158 (2000)Google Scholar
  4. 4.
    Bettiol, R.G., Piccione, P.: Infinitely many solutions to the Yamabe problem on noncompact manifolds. Ann. Inst. Fourier (Grenoble) (to appear). arXiv:1603.07788
  5. 5.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume, I. Math. Ann. 70, 297–336 (1911)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume, II. Die Gruppen mit einem endlichen Fundamentalbereich. Math. Ann. 72, 400–412 (1912)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature Vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)Google Scholar
  8. 8.
    Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus, H.: Crystallographic Groups of Four-dimensional Space, Wiley Monographs in Crystallography. Wiley, New York (1978)Google Scholar
  9. 9.
    Buser, P.: A geometric proof of Bieberbach’s theorems on crystallographic groups. Enseign. Math. (2) 31, 137–145 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Charlap, L.S.: Bieberbach Groups and Flat Manifolds. Universitext, Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cid, C., Schulz, T.: Computation of five- and six-dimensional Bieberbach groups. Exp. Math. 10, 109–115 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Conway, J.H.: The orbifold notation for surface groups. In: Groups, Combinatorics and Geometry (Durham, 1990), vol. 165 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, pp. 438–447 (1992)Google Scholar
  13. 13.
    Davis, M.W.: Lectures on orbifolds and reflection groups. In: Transformation Groups and Moduli Spaces of Curves, Volume 16 of Advanced Lectures in Mathematics (ALM). International Press, Somerville, pp. 63–93 (2011)Google Scholar
  14. 14.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)Google Scholar
  15. 15.
    Fukaya, K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. (N.S.) 12, 121–160 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. Math. (2) 136, 253–333 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Galaz-Garcia, F., Guijarro, L.: On Three-Dimensional Alexandrov Spaces. International Mathematics Research Notices IMRN, pp. 5560–5576 (2015)Google Scholar
  18. 18.
    Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), Volume 74 of Contemporary Mathematics. American Mathematical Society, Providence, pp. 169–198 (1988)Google Scholar
  19. 19.
    Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, English ed., Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes (2007)Google Scholar
  20. 20.
    Hantzsche, W., Wendt, H.: Dreidimensionale euklidische Raumformen. Math. Ann. 110, 593–611 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Harvey, J., Searle, C.: Orientation and symmetries of Alexandrov spaces with applications in positive curvature. J. Geom. Anal. 27(2), 1636–1666 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hiss, G., Szczepański, A.: On torsion free crystallographic groups. J. Pure Appl. Algebra 74, 39–56 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Joyce, D.: Deforming Calabi–Yau orbifolds. Asian J. Math. 3, 853–867 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kang, E.S.: Moduli spaces of 3-dimensional flat manifolds. J. Korean Math. Soc. 43, 1065–1080 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kang, E.S., Kim, J.Y.: Deformation spaces of 3-dimensional flat manifolds. Commun. Korean Math. Soc. 18, 95–104 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow. Astérisque No. 365, 101–177 (2014)MathSciNetGoogle Scholar
  27. 27.
    Mahler, K.: On lattice points in \(n\)-dimensional star bodies. I. Existence theorems. Proc. R. Soc. Lond. Ser. A 187, 151–187 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Matsumoto, Y., Montesinos-Amilibia, J.M.: A proof of Thurston’s uniformization theorem of geometric orbifolds. Tokyo J. Math. 14, 181–196 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pansu, P.: Effondrement des variétés riemanniennes, d’après J. Cheeger et M. Gromov, Astérisque. Seminar Bourbaki, vol. 1983/84, pp. 63–82 (1985)Google Scholar
  30. 30.
    Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions. Exp. Math. 9, 407–411 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Szczepański, A.: Problems on Bieberbach groups and flat manifolds. Geom. Dedicata 120, 111–118 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Szczepański, A.: Geometry of Crystallographic Groups, Volume 4 of Algebra and Discrete Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2012)Google Scholar
  33. 33.
    Thurston, W.P.: Three-dimensional geometry and topology. In: Silvio, L. (ed.) Volume 35 of Princeton Mathematical Series, vol. 1. Princeton University Press, Princeton (1997)Google Scholar
  34. 34.
    Wolf, J.A.: Local and global equivalence for flat affine manifolds with parallel geometric structures. Geom. Dedicata 2, 127–132 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish Inc, Houston (1984)zbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Renato G. Bettiol
    • 1
    Email author
  • Andrzej Derdzinski
    • 2
  • Paolo Piccione
    • 3
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA
  3. 3.Departamento de MatemáticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations