Teichmüller theory and collapse of flat manifolds
- 170 Downloads
- 1 Citations
Abstract
We provide an algebraic description of the Teichmüller space and moduli space of flat metrics on a closed manifold or orbifold and study its boundary, which consists of (isometry classes of) flat orbifolds to which the original object may collapse. It is also shown that every closed flat orbifold can be obtained by collapsing closed flat manifolds, and the collapsed limits of closed flat 3-manifolds are classified.
Keywords
Flat manifolds Flat orbifolds Teichmueller space Moduli space Collapse Gromov–Hausdorff convergenceMathematics Subject Classification
22E40 32G15 53C15 53C24 53C29 57M60 57R18 58D17 58D27Notes
Acknowledgements
It is a pleasure to thank Alexander Lytchak, John Harvey, Karsten Grove, and Curtis Pro for suggestions regarding equivariant Gromov–Hausdorff convergence, Burkhard Wilking for comments on realizing flat orbifolds as limits of flat manifolds, and Andrzej Szczepański for conversations about the holonomy representation of flat manifolds. Part of this work was done during a visit of the first named author to the Max Planck Institute for Mathematics in Bonn, Germany, and of the third named author to the University of Notre Dame, USA; they would like to thank these institutions for providing excellent working conditions. The second and third named authors are partially supported by a FAPESP-OSU 2015 Regular Research Award (FAPESP Grant: 2015/50315-3).
References
- 1.Alexandrino, M.M., Bettiol, R.G.: Lie Groups and Geometric Aspects of Isometric Actions. Springer, New York (2015)CrossRefzbMATHGoogle Scholar
- 2.Auslander, L., Kuranishi, M.: On the holonomy group of locally Euclidean spaces. Ann. Math. 65(2), 411–415 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Baues, O.: Varieties of discontinuous groups. In: Crystallographic Groups and Their Generalizations (Kortrijk, 1999), vol. 262 of Contemporary Mathematics. American Mathematical Society, Providence, pp. 147–158 (2000)Google Scholar
- 4.Bettiol, R.G., Piccione, P.: Infinitely many solutions to the Yamabe problem on noncompact manifolds. Ann. Inst. Fourier (Grenoble) (to appear). arXiv:1603.07788
- 5.Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume, I. Math. Ann. 70, 297–336 (1911)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume, II. Die Gruppen mit einem endlichen Fundamentalbereich. Math. Ann. 72, 400–412 (1912)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature Vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)Google Scholar
- 8.Brown, H., Bülow, R., Neubüser, J., Wondratschek, H., Zassenhaus, H.: Crystallographic Groups of Four-dimensional Space, Wiley Monographs in Crystallography. Wiley, New York (1978)Google Scholar
- 9.Buser, P.: A geometric proof of Bieberbach’s theorems on crystallographic groups. Enseign. Math. (2) 31, 137–145 (1985)MathSciNetzbMATHGoogle Scholar
- 10.Charlap, L.S.: Bieberbach Groups and Flat Manifolds. Universitext, Springer, New York (1986)CrossRefzbMATHGoogle Scholar
- 11.Cid, C., Schulz, T.: Computation of five- and six-dimensional Bieberbach groups. Exp. Math. 10, 109–115 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Conway, J.H.: The orbifold notation for surface groups. In: Groups, Combinatorics and Geometry (Durham, 1990), vol. 165 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, pp. 438–447 (1992)Google Scholar
- 13.Davis, M.W.: Lectures on orbifolds and reflection groups. In: Transformation Groups and Moduli Spaces of Curves, Volume 16 of Advanced Lectures in Mathematics (ALM). International Press, Somerville, pp. 63–93 (2011)Google Scholar
- 14.Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012)Google Scholar
- 15.Fukaya, K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. (N.S.) 12, 121–160 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. Math. (2) 136, 253–333 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Galaz-Garcia, F., Guijarro, L.: On Three-Dimensional Alexandrov Spaces. International Mathematics Research Notices IMRN, pp. 5560–5576 (2015)Google Scholar
- 18.Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), Volume 74 of Contemporary Mathematics. American Mathematical Society, Providence, pp. 169–198 (1988)Google Scholar
- 19.Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, English ed., Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes (2007)Google Scholar
- 20.Hantzsche, W., Wendt, H.: Dreidimensionale euklidische Raumformen. Math. Ann. 110, 593–611 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Harvey, J., Searle, C.: Orientation and symmetries of Alexandrov spaces with applications in positive curvature. J. Geom. Anal. 27(2), 1636–1666 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Hiss, G., Szczepański, A.: On torsion free crystallographic groups. J. Pure Appl. Algebra 74, 39–56 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Joyce, D.: Deforming Calabi–Yau orbifolds. Asian J. Math. 3, 853–867 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Kang, E.S.: Moduli spaces of 3-dimensional flat manifolds. J. Korean Math. Soc. 43, 1065–1080 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Kang, E.S., Kim, J.Y.: Deformation spaces of 3-dimensional flat manifolds. Commun. Korean Math. Soc. 18, 95–104 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow. Astérisque No. 365, 101–177 (2014)MathSciNetGoogle Scholar
- 27.Mahler, K.: On lattice points in \(n\)-dimensional star bodies. I. Existence theorems. Proc. R. Soc. Lond. Ser. A 187, 151–187 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Matsumoto, Y., Montesinos-Amilibia, J.M.: A proof of Thurston’s uniformization theorem of geometric orbifolds. Tokyo J. Math. 14, 181–196 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Pansu, P.: Effondrement des variétés riemanniennes, d’après J. Cheeger et M. Gromov, Astérisque. Seminar Bourbaki, vol. 1983/84, pp. 63–82 (1985)Google Scholar
- 30.Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions. Exp. Math. 9, 407–411 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Szczepański, A.: Problems on Bieberbach groups and flat manifolds. Geom. Dedicata 120, 111–118 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Szczepański, A.: Geometry of Crystallographic Groups, Volume 4 of Algebra and Discrete Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2012)Google Scholar
- 33.Thurston, W.P.: Three-dimensional geometry and topology. In: Silvio, L. (ed.) Volume 35 of Princeton Mathematical Series, vol. 1. Princeton University Press, Princeton (1997)Google Scholar
- 34.Wolf, J.A.: Local and global equivalence for flat affine manifolds with parallel geometric structures. Geom. Dedicata 2, 127–132 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish Inc, Houston (1984)zbMATHGoogle Scholar