Advertisement

On a nonlinear model for arctic gyres

  • Jifeng Chu
Article

Abstract

We prove some results on the existence and uniqueness of solutions to a recently derived nonlinear model for the ocean flow in arctic gyres. We derive an equivalent formulation of the problem in the form of an integral equation on a semi-infinite interval and then use fixed point techniques. We also obtain some stability result.

Keywords

Differential equation Integral equation Ocean gyre 

Mathematics Subject Classification

45G99 58J32 76B03 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11671118).

References

  1. 1.
    Apel, J.R.: Principles of Ocean Physics. Academic Press, London (1987)Google Scholar
  2. 2.
    Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. (2017). doi: 10.1007/s00605-017-1087-1 Google Scholar
  3. 3.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)CrossRefGoogle Scholar
  5. 5.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585–3594 (2016)CrossRefGoogle Scholar
  6. 6.
    Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. A 473, 20170063 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath and Co., Boston (1965)MATHGoogle Scholar
  9. 9.
    Daners, D.: The Mercator and stereographic projections, and many in between. Am. Math. Mon. 119, 199–210 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gabler, R.E., Petersen, J.F., Trapasso, L.M.: Essentials of Physical Geography. Thomson Brooks/Cole, Belmont (2007)Google Scholar
  11. 11.
    Garrison, T.: Essentials of Oceanography. National Geographic Society, Stamford (2014)Google Scholar
  12. 12.
    Jacobs, G.A., Mitchell, J.L.: Ocean circulation variations associated with the Antarctic Circumpolar Wave. Geophys. Res. Lett. 23, 2947–2950 (1996)CrossRefGoogle Scholar
  13. 13.
    Squire, V.A.: Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol. 49, 110–133 (2007)CrossRefGoogle Scholar
  14. 14.
    Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    White, W.B., Peterson, R.G.: An Antarctic circumpolar wave in surface pressure, temperature and sea-ice extent. Nature 380, 699–702 (1996)CrossRefGoogle Scholar
  16. 16.
    Wilkinson, T., Wiken, E., Bezaury-Creel, J., Hourigan, T., Agardy, T., Herrmann, H., Janishevski, L., Madden, C., Morgan, L., Padilla, M.: Marine Ecoregions of North America, p. 200. Commission for Environmental Cooperation, Montreal (2009)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina

Personalised recommendations