Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 195, Issue 4, pp 1123–1151 | Cite as

Critical blowup exponent to a class of semilinear elliptic equations with constraints in higher dimension-local properties

  • Takashi Suzuki
  • Ryo TakahashiEmail author
Article
  • 206 Downloads

Abstract

We study a class of semilinear elliptic equations with constraints in higher dimension. It is known that several mathematical structures of the problem are closed to those of the Liouville equation in dimension two. In this paper, we establish a classification of entire solutions, the sup \(+\) inf-type inequality and the quantized blowup mechanism.

Keywords

Critical blowup exponent Scaling invariance Classification of entire solutions sup \(+\) inf-type inequality Blowup Quantization 

Mathematics Subject Classification

35B33 35J61 35A20 35B08 35Q60 

Notes

Acknowledgments

This work is partially supported by Scientific Research A (No. 26247013) of Japan Society for the Promotion of Science (JSPS).

References

  1. 1.
    Berestycki, H., Brezis, H.: On a free boundary problem arising in plasma physics. Nonlinear Anal. 4, 415–436 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brezis, H., Merle, F.: Uniform estimates and blowup behavior for solutions of \(-{\varDelta }u = V(x)e^u\) in two dimensions. Comm. Partial Differ. Equ. 16, 1223–1253 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brezis, H., Li, Y.Y., Shafrir, I.: A \(\sup +\inf \) inequality for some nonlinear elliptic equations involving exponential nonlinearities. J. Funct. Anal. 115, 344–358 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chavanis, P.-H.: Generalized kinetic equations and effective thermodynamics. Banach Cent. Publ. 66, 79–101 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chavanis, P.-H., Sire, C.: Anomalous diffusion and collapse of self-gravitating Langevin particles in \(D\) dimensions. Phys. Rev. E 69, 016116 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differ. Equ. 6, 883–901 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Li, Y.Y., Shafrir, I.: Blow-up analysis for solutions of \(-{\varDelta }u = Ve^u\) in dimension two. Indiana Univ. Math. J. 43, 1255–1270 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, Y., Ni, W.-M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({ R}^n\). Comm. Partial Differ. Equ. 18, 1043–1054 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nagasaki, K., Suzuki, T.: Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially-dominated nonlinearities. Asymptot. Anal. 3, 173–188 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Shafrir, I.: Une inegalité de type \(\sup +\inf \) pour l’equation \(-{\varDelta }u = V(x)e^u\). C. R. Math. Acad. Sci. Paris 315, 159–164 (1992)MathSciNetGoogle Scholar
  14. 14.
    Suzuki, T.: Free Energy and Self-Interacting Particles. Birkhäuser, Boston (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Suzuki, T.: Mean Field Theories and Dual Variation. Atlantis Press, Amsterdam (2008)zbMATHGoogle Scholar
  16. 16.
    Suzuki, T., Takahashi, F.: Nonlinear Eigenvalue Problem with Quantization, Handbook of Differential Equations, Stationary Partial Differential Equations 5. Elsevier, Amsterdom (2008)Google Scholar
  17. 17.
    Suzuki, T., Takahashi, R.: Degenerate parabolic equation with critical exponent derived from the kinetic theory, II, blowup threshold. Differ. Integral Equ. 22, 1153–1172 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Temam, R.: A nonlinear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60, 51–73 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Temam, R.: Remarks on a free boundary value problem arising in plasma physics. Comm. Partial Differ. Equ. 2, 563–585 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, G., Ye, D.: On a nonlinear elliptic equation arising in a free boundary problem. Math. Z. 244, 531–548 (2003)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, S.: Some nonlinear elliptic equations with subcritical growth and critical behavior. Houst. J. Math. 16, 559–572 (1990)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wolansky, G.: Critical behaviour of semi-linear elliptic equations with sub-critical exponents. Nonlinear Anal. 26, 971–995 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering ScienceOsaka UniversityToyonakashiJapan

Personalised recommendations