Advertisement

Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system

  • Zhaoli Liu
  • Zhi-Qiang WangEmail author
  • Jianjun Zhang
Article

Abstract

In this paper, we consider the following Schrödinger–Poisson system
$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+V(x)u+\phi u=f(u)&{}\quad \text{ in }\ \mathbb {R}^3,\\ -\Delta \phi =u^2&{}\quad \text{ in }\ \mathbb {R}^3. \end{array} \right. \end{aligned}$$
We investigate the existence of multiple bound state solutions, in particular sign-changing solutions. By using the method of invariant sets of descending flow, we prove that this system has infinitely many sign-changing solutions. In particular, the nonlinear term includes the power-type nonlinearity \(f(u)=|u|^{p-2}u\) for the well-studied case \(p\in (4,6)\), and the less studied case \(p\in (3,4)\), and for the latter case, few existence results are available in the literature.

Mathematics Subject Classification

35J20 35J60 

Notes

Acknowledgments

J. Zhang thanks Dr. Zhengping Wang and Prof. Huansong Zhou for letting him know their work [30]. Z. Liu is supported by NSFC-11271265, NSFC-11331010 and BCMIIS. Z.-Q. Wang is partially supported by NSFC-11271201 and BCMIIS. J. Zhang is supported by CPSF-2013M530868.

References

  1. 1.
    Alves, C.O., Souto, M.A.S.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambrosetti, A., Ruiz, R.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non-linéaire 27, 779–791 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bartsch, T., Liu, Z.: On a superlinear elliptic p-Laplacian equation. J. Differ. Equ. 198, 149–175 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a p-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \(R^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bartsch, T., Wang, Z.-Q.: On the existence of sign changing solutions for semilinear Dirichlet problems. Topol. Methods Nonlinear Anal. 7, 115–131 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D’Aprile, T.: Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)MathSciNetGoogle Scholar
  15. 15.
    D’Aprile, T., Wei, J.: Standing waves in the Maxwell–Schrödinger equation and an optimal configuration problem. Calc. Var. Partial Differ. Equ. 25, 105–137 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ianni, I.: Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem. Topol. Methods Nonlinear Anal. 41, 365–386 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson system with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ianni, I., Vaira, G.: A note on non-radial sign-changing solutions for the Schrödinger–Poisson problem in the semiclassical limit. In: Concentration Analysis and Applications to PDE Trends inMathematics, pp. 143–156 (2013)Google Scholar
  19. 19.
    Jeanjean, L.: On the existence of bounded Palais–Smale sequence and application to a Landesman–Lazer type problem set on \({{\mathbb{R}}^N}\). Proc. R. Soc. Edinb. Sect. A Math. 129, 787–809 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. AMS, Providence (1997)Google Scholar
  23. 23.
    Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schröinger systems. Calc. Var. Partial Differ. Equ. 52, 565–586 (2015). doi: 10.1007/s00526-014-0724-y CrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172, 257–299 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, Z., Wang, Z.-Q.: Sign-changing solutions of nonlinear elliptic equations. Front. Math. China 3, 221–238 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vaira, G.: Ground states for Schrödinger–Poisson type systems. Ric. Mat. 2, 263–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \({\mathbb{R}}^3\). Calc. Var. Partial. Differ. Equ. 52, 927–943 (2015)CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingPeople‘s Republic of China
  2. 2.Center for Applied MathematicsTianjin UniversityTianjinPeople‘s Republic of China
  3. 3.Department of Mathematics and StatisticsUtah State UniversityLoganUSA
  4. 4.Chern Institute of MathematicsNankai UniversityTianjinPeople‘s Republic of China

Personalised recommendations