Advertisement

Asymptotics and inversion of Riesz potentials through decomposition in radial and spherical parts

  • Johan Thim
Article

Abstract

It is known that radial symmetry is preserved by the Riesz potential operators and also by the hypersingular Riesz fractional derivatives typically used for inversion. In this paper, we collect properties, asymptotics, and estimates for the radial and spherical parts of Riesz potentials and for solutions to the Riesz potential equation of order one. Sharp estimates for spherical functions are provided in terms of seminorms, and a careful analysis of the radial part of a Riesz potential is carried out in elementary terms. As an application, we provide a two weight estimate for the inverse of the Riesz potential operator of order one acting on spherical functions.

Keywords

Riesz potentials Singular integrals Weighted spaces Radial functions Spherical symmetry 

Mathematics Subject Classification

47G40 45E99 26A33 

References

  1. 1.
    De Nápoli, P.L., Drelichman, I.: Weighted convolution inequalities for radial functions. Ann. Mat. Pura Appl. (2013). doi: 10.1007/s10231-013-0370-6
  2. 2.
    De Nápoli, P.L., Drelichman, I., Durán, R.G.: On weighted inequalities for fractional integrals of radial functions. Ill. J. Math. 55(2), 575–587 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. 192(4), 553–568 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)CrossRefGoogle Scholar
  5. 5.
    Kozlov, V., Thim, J., Turesson, B.O.: Single layer potentials on surfaces with small Lipschitz constant. J. Math. Anal. Appl. 418(2), 676–712 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kozlov, V., Thim, J., Turesson, B.O.: Riesz potential equations in local \(L^p\)-spaces. Complex Var. Elliptic Equ. 54(2), 125–151 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mazya, V.G.: Sobolev Spaces. Springer, Berlin (1985)Google Scholar
  8. 8.
    Ponnusamy, S., Vuorinen, M.: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44(2), 278–301 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy pour l’équation des ondes. Bull. Soc. Math. Fr. 67, 153–170 (1939)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81(1), 1–222 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rubin, B.: Fractional Integrals and Potentials. Addison Wesley Longman Limited, Harlow (1996)zbMATHGoogle Scholar
  12. 12.
    Rubin, B.: One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions. Mat. Zametki 34(4), 521–533; English translation. Math. Notes 34(3–4), 751–757 (1983)Google Scholar
  13. 13.
    Samko, S.S.G., Kilbas, A.A.A., Marichev, O.O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)zbMATHGoogle Scholar
  14. 14.
    Samko, S.: On local summability of Riesz potentials in the case \(\mathop {Re} \alpha {\>} 0\). Anal. Math. 25(3), 205–210 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Siegel, D., Talvila, E.: Pointwise growth estimates of the Riesz potential. Dyn. Contin. Discret. Impuls. Syst. 5(1–4), 185–194 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tyson, J.: Sharp weighted Young’s inequalities and Moser–Trudinger inequalities on Heisenberg type groups and Grushin spaces. Potential Anal. 24(4), 357–384 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Thangavelu, S., Xu, Y.: Riesz transform and Riesz potentials for Dunkl transform. J. Comput. Appl. Math. 199(1), 181–195 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden

Personalised recommendations