The wave equation on Damek–Ricci spaces

  • Jean-Philippe Anker
  • Vittoria Pierfelice
  • Maria VallarinoEmail author


We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on Damek–Ricci spaces and deduce Strichartz estimates for a large family of admissible pairs. As an application, we obtain global well-posedness results for the nonlinear wave equation.


Damek–Ricci spaces Semilinear wave equation Dispersive estimate Strichartz estimate Global well-posedness 

Mathematics Subject Classification (2010)

35L05 43A85 58J45 22E30 35L71 43A90 47J35 58D25 


  1. 1.
    Anker, J.-Ph., Damek, E., Yacoub, C.: Spherical analysis on harmonic \(AN\) groups. Ann. Sc. Norm. Super. Pisa 33, 643–679 (1996)Google Scholar
  2. 2.
    Anker, J.-Ph., Pierfelice, V.: Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. Inst. H. Poincaré (C) Non Linear Anal. 26, 1853–1869 (2009)Google Scholar
  3. 3.
    Anker, J.-Ph., Pierfelice, V.: Wave and Klein–Gordon Equations on Hyperbolic Spaces. arXiv:1104.0177Google Scholar
  4. 4.
    Anker, J.-Ph., Pierfelice, V., Vallarino, M.: Schrödinger equations on Damek–Ricci spaces. Commun. Partial Differ. Equ. 36, 976–997 (2011)Google Scholar
  5. 5.
    Anker, J.-Ph., Pierfelice, V., Vallarino, M.: The wave equation on hyperbolic spaces. J. Differ. Equ. 252, 5613–5661 (2012)Google Scholar
  6. 6.
    Astengo, F.: A class of \(L^p\)-convolutors on harmonic extensions of \(H\)-type groups. J. Lie Theory 9, 147–164 (1995)MathSciNetGoogle Scholar
  7. 7.
    Cowling, M.G., Dooley, A.H., Korányi, A., Ricci, F.: \(H\)-type groups and Iwasawa decompositions. Adv. Math. 87, 1–41 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cowling, M.G., Dooley, A.H., Korányi, A., Ricci, F.: An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal. 8, 199–237 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc. 27, 139–142 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Damek, E., Ricci, F.: Harmonic analysis on solvable extensions of \(H\)-type groups. J. Geom. Anal. 2, 213–248 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    D’Ancona, P., Georgiev, V., Kubo, H.: Weighted decay estimates for the wave equation. J. Differ. Equ. 177, 146–208 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    D’Ancona, P., Fanelli, L.: Decay estimates for the wave and Dirac equations with a magnetic potential. Commun. Pure Appl. Math. 60, 357–392 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D’Ancona, P., Fanelli, L.: Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33, 1082–1112 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Georgiev, V.: Semilinear hyperbolic equations. In: MSJ Memoirs, 2nd edn, vol. 7. Mathematical Society of Japan, Tokyo, p. 209 (2005)Google Scholar
  15. 15.
    Georgiev, V., Lindblad, H., Sogge, C.: Weighted Strichartz estimates and global existence for semilinear wave equations. Am. J. Math. 119, 1291–1319 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 50–68 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hassani, A.: Equation des ondes sur les espaces symétriques riemanniens de type non compact, Ph. D. Thesis, Université Paris-Ouest / Nanterre (2011)Google Scholar
  18. 18.
    Hassani, A.: Wave equation on Riemannian symmetric spaces. J. Math. Phys. 524, 043514, 15 pp. (2011)Google Scholar
  19. 19.
    Herz, C.S.: Sur le phénomène de Kunze–Stein. C. R. Acad. Sci. Paris Sér. A 271, 491–493 (1970)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Hörmander, L.V.: The Analysis of Linear Partial Differential Operators III (pseudo-differential operators). Springer, Berlin (1985, 1994, 2007)Google Scholar
  21. 21.
    Ionescu, A.D.: Fourier integral operators on noncompact symmetric spaces of real rank one. J. Funct. Anal. 174, 274–300 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 28, 235–265 (1979)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 145–159 (1975)Google Scholar
  24. 24.
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Klainerman, S., Ponce, G.: Global, small amplitude solutions to nonlinear evolution equations. Commun. Pure Appl. Math. 36, 133–141 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A. et al. (eds.) Special Functions (group theoretical aspects and applications), Reidel, pp. 1–85 (1984)Google Scholar
  27. 27.
    Lindblad, H., Sogge, C.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130, 357–426 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Metcalfe, J., Taylor, M.E.: Nonlinear waves on 3D hyperbolic space. Trans. Am. Math. Soc. 363, 3489–3529 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Metcalfe, J., Taylor, M.E.: Dispersive wave estimates on 3D hyperbolic space. Proc. Am. Math. Soc. 140, 3861–3866 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Müller, D., Thiele, C.: Wave equation and multiplier estimates on \(ax+b\) groups. Studia Math. 179, 117–148 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Müller, D., Vallarino, M.: Wave equation and multiplier estimates on Damek–Ricci spaces. J. Fourier Anal. Appl. 16, 204–232 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Pierfelice, V.: Weighted Strichartz estimates for the Schrödinger and wave equations on Damek–Ricci spaces. Math. Z. 260, 377–392 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Ricci, F.: The spherical transform on harmonic extensions of \(H\)-type groups. Rend. Sem. Mat. Univ. Polit. Torino 50, 381–392 (1992)zbMATHGoogle Scholar
  34. 34.
    Sideris, T.: Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differ. Equ. 52, 378–406 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Strauss, W.: Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics 73. American Mathematical Society (1989)Google Scholar
  36. 36.
    Tataru, D.: Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Am. Math. Soc. 353, 795–807 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Triebel, H.: Theory of Function Spaces II, Monographs Math. 84, Birkhäuser (1992)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jean-Philippe Anker
    • 1
  • Vittoria Pierfelice
    • 1
  • Maria Vallarino
    • 2
    Email author
  1. 1.CNRS, Fédération Denis Poisson (FR 2964), Laboratoire MAPMO (UMR 6628)Université d’OrléansOrléans Cedex 2France
  2. 2.Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”Politecnico di TorinoTorinoItaly

Personalised recommendations