Annali di Matematica Pura ed Applicata (1923 -)

, Volume 194, Issue 1, pp 77–86 | Cite as

On a class of generalised Schmidt groups

  • A. Ballester-Bolinches
  • R. Esteban-Romero
  • Qinhui Jiang
  • Xianhua Li


In this paper families of non-nilpotent subgroups covering the non-nilpotent part of a finite group are considered. An \(A_5\)-free group possessing one of these families is soluble, and soluble groups with this property have Fitting length at most three. A bound on the number of primes dividing the order of the group is also obtained.


Finite groups Nilpotent groups Maximal subgroups 

Mathematics Subject Classification (2010)

20D05 20D10 20F16 



The first and second authors have been supported by the Research Grant MTM2010-19938-C03-01 from the Ministerio de Ciencia e Innovación of Spain. The first author has also been supported by a project of the National Natural Science Foundation of China (No. 11271085). The third author has been supported by the China Postdoctoral Science Foundation funded project (No. 20100480582) and National Natural Science Foundation of China (No. 11101258). The fourth author has been supported by the National Natural Science Foundation of China (No. 11171243) and University of Jinan Research Funds for Doctors (XBS1335, XBS1336).


  1. 1.
    Asaad, M.: On minimal subgroups of finite groups. Glasg. Math. J. 51, 359–366 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Asaad, M.: On the solvability of finite groups. Comm. Algebra 37(2), 719–723 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ballester-Bolinches, A., Cossey, J., Esteban-Romero, R.: On the abnormal structure of finite groups. Rev. Math. Iberoam. (in press)Google Scholar
  4. 4.
    Ballester-Bolinches, A., Ezquerro, L.M.: Classes of finite groups. In: Hazewinkel, M. (ed.) Mathematics and its Applications, vol. 584. Springer, New York (2006)Google Scholar
  5. 5.
    Beidleman, J.C., Heineken, H.: Minimal non-\({\cal F}\)-groups. Ric. Mat. 58(1), 33–41 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, London (1985)MATHGoogle Scholar
  7. 7.
    Huppert, B.: Endliche Gruppen I. In: Eckmann, B., van der Waerden, B.L. (eds.) Die Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, Berlin (1967)Google Scholar
  8. 8.
    Huppert, B., Blackburn, N.: Finite groups III. In: Eckmann, B., Varadhan, S.R.S. (eds.) Die Grundlehren der Mathematischen Wissenschaften, vol. 243, Springer, Berlin (1982)Google Scholar
  9. 9.
    Huppert, B., Lempken, W.: Simple groups of order divisible by at most four primes. Izv. Gomel. Gos. Univ. Im. F. Skoriny 3, 64–75 (2000)Google Scholar
  10. 10.
    Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and the edge-primitive \(s\)-arc transitive graphs. Proc. Lond. Math. Soc. 103(3), 441–472 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Li, Q., Guo, X.: On generalization of minimal non-nilpotent groups. Lobachevskii J. Math. 31(3), 239–243 (2010)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Li, Q., Guo, X.: On \(p\)-nilpotence and solubility of groups. Arch. Math. (Basel) 96, 1–7 (2011)Google Scholar
  13. 13.
    Lukyanenko, V.O., Netbay, O.V., Skiba, A.N.: Finite groups in which every non-abnormal subgroup is \(X_s\)-permutable. Vetsī Nats. Akad. Navuk Belarusī Ser. Fiz. Mat. Navuk, (4), 25–29 (2009) (Russian).
  14. 14.
    Rose, J.S.: The influence on a finite group of its proper abnormal structure. J. Lond. Math. Soc. 40, 348–361 (1965)CrossRefMATHGoogle Scholar
  15. 15.
    Schmidt, O.J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat. Sb. 31, 366–372 (1924)Google Scholar
  16. 16.
    Skiba, A.N.: On the intersection of all maximal \(\mathfrak{F}\)-subgroups of a finite group. J. Algebra 343, 173–182 (2011)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Ballester-Bolinches
    • 1
  • R. Esteban-Romero
    • 1
    • 2
  • Qinhui Jiang
    • 3
    • 4
  • Xianhua Li
    • 5
  1. 1.Departament d’ÀlgebraUniversitat de ValènciaBurjassotSpain
  2. 2.Institut Universitari de Matemàtica Pura i AplicadaUniversitat Politècnica de ValènciaValènciaSpain
  3. 3.School of Mathematical SciencesUniversity of JinanJinanChina
  4. 4.Department of MathematicsShanghai UniversityShanghaiChina
  5. 5.School of Mathematical ScienceSoochow UniversitySuzhouChina

Personalised recommendations