Annali di Matematica Pura ed Applicata (1923 -)

, Volume 193, Issue 6, pp 1703–1725 | Cite as

Scale interactions in compressible rotating fluids

  • Eduard Feireisl
  • Antonín Novotný


We study a triple singular limit for the scaled barotropic Navier–Stokes system modeling the motion of a rotating, compressible, and viscous fluid, where the Mach and Rossby numbers are proportional to a small parameter \(\varepsilon \), while the Reynolds number becomes infinite for \(\varepsilon \rightarrow 0\). If the fluid is confined to an infinite slab bounded above and below by two parallel planes, the limit behavior is identified as a purely horizontal motion of an incompressible inviscid fluid, the evolution of which is described by an analogue of the Euler system.


  1. 1.
    Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133–1176 (1999)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50 (Special Issue), 1–35 (2001)Google Scholar
  3. 3.
    Bresch, D., Desjardins, B., Gerard-Varet, D.: Rotating fluids in a cylinder. Disc. Cont. Dyn. Syst. 11, 47–82 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics, vol. 32 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press Oxford University Press, Oxford (2006)Google Scholar
  5. 5.
    Clopeau, T., Mikelić, A., Robert, R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11(6), 1625–1636 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Durran, D.R.: Is the Coriolis force really responsible for the inertial oscillation? Bull. Am. Meteorol. Soc. 74, 2179–2184 (1993)CrossRefGoogle Scholar
  7. 7.
    Ebin, D.B.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105, 141–200 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ebin, D.B.: Viscous fluids in a domain with frictionless boundary. Global analysis—analysis on manifolds. In: Kurke, H., Mecke, J., Triebel, H., Thiele, R. (eds.) Teubner-Texte zur Mathematik 57, pp. 93–110. Teubner, Leipzig (1983)Google Scholar
  9. 9.
    Feireisl, E., Gallagher, I., Gerard-Varet, D., Novotný, A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314, 641–670 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Feireisl, E., Gallagher, I., Novotný, A.: A singular limit for compressible rotating fluids. SIAM J. Math. Anal. 44, 192–205 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Feireisl, E., Jin, Bum Ja, Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)Google Scholar
  12. 12.
    Feireisl, E., Novotný, Antonín, Sun, Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60(2), 611–631 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Guo, Z., Peng, L., Wang, B.: Decay estimates for a class of wave equations. J. Funct. Anal. 254(6), 1642–1660 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jones, C.A., Roberts, P.H.: Magnetoconvection in rapidly rotating Boussinesq and compressible fluids. Geophys. Astrophys. Fluid Dyn. 55, 263–308 (1990)CrossRefGoogle Scholar
  16. 16.
    Jones, C.A., Roberts, P.H., Galloway, D.J.: Compressible convection in the presence of rotation and a magnetic field. Geophys. Astrophys. Fluid Dyn. 53, 153–182 (1990)CrossRefGoogle Scholar
  17. 17.
    Kato, T.: Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Chern, S.S. (ed.) Seminar on PDE’s. Springer, New York (1984)Google Scholar
  18. 18.
    Kelliher, J.P.: On Kato’s condition for vanishing viscosity. Indiana Univ. Math. J. 56, 1711–1721 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Klein, R.: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM Math. Mod. Numer. Anal. 39, 537–559 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Klein, R.: Scale-dependent models for atmospheric flows. In: Annual Review of Fluid Mechanics, vol. 42, pp. 249–274. Palo Alto, CA (2010)Google Scholar
  22. 22.
    Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Masmoudi, N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Ration. Mech. Anal. 142, 375–394 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53, 432–483 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier–Stokes system. Ann. Inst. Henri Poincaré. Anal. non linéaire 18, 199–224 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, III. Elsevier, Amsterdam (2006)Google Scholar
  27. 27.
    Ngo, V.S.: Rotating fluids with small viscosity. Int. Mat. Res. Notice 10, 1860–1890 (2009)MathSciNetGoogle Scholar
  28. 28.
    Oliver, M.: Classical solutions for a generalized Euler equation in two dimensions. J. Math. Anal. Appl. 215, 471–484 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192, 433–461 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Swann, H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in \(R^3\). Trans. Am. Math. Soc. 157, 373–397 (1971)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Annali Scuola Normale Pisa 25, 807–828 (1997)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Temam, R., Wang, X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179, 647–686 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Wang, S., Jiang, S.: The convergence of the Navier–Stokes–Poisson system to the incompressible Euler equations. Comm. Partial Differ. Equ. 31(4–6), 571–591 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zeitlin, V.: Nonlinear Dynamics of Rotating Shallow Water. Methods and Advances. Springer, New York (2006)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of MathematicsAcademy of Sciences of the Czech RepublicPrague 1Czech Republic
  2. 2.Faculty of Mathematics and Physics, Mathematical InstituteCharles University in PraguePrague 8Czech Republic
  3. 3.IMATH, EA 2134Université du Sud Toulon-VarLa GardeFrance

Personalised recommendations