Annali di Matematica Pura ed Applicata

, Volume 193, Issue 3, pp 633–641 | Cite as

Generalized quaternionic manifolds



We initiate the study of the generalized quaternionic manifolds by classifying the generalized quaternionic vector spaces, and by giving two classes of nonclassical examples of such manifolds. Thus, we show that any complex symplectic manifold is endowed with a natural (nonclassical) generalized quaternionic structure, and the same applies to the heaven space of any three-dimensional Einstein–Weyl space. In particular, on the product \(Z\) of any complex symplectic manifold \(M\) and the sphere, there exists a natural generalized complex structure, with respect to which \(Z\) is the twistor space of \(M\).


Quaternionic manifold Generalized complex structure Twistor space 

Mathematics Subject Classfication (1991)

53D18 53C26 53C28 


  1. 1.
    Baird, P., Pantilie, R.: Harmonic morphisms on heaven spaces. Bull. Lond. Math. Soc. 41, 198–204 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Besse, A.L.: Einstein manifolds, Reprint of the 1987 edn. classics in mathematics. Springer, Berlin (2008)Google Scholar
  3. 3.
    Bredthauer, A.: Generalized hyper-Kähler geometry and supersymmetry. Nucl. Phys. B 773, 172–183 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Gualtieri, M.: Generalized Complex Geometry. University of Oxford, D. Phil. Thesis (2003)Google Scholar
  6. 6.
    Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Twistor Geometry and Nonlinear Systems (Primorsko, 1980), pp. 73–99, Lecture Notes in Mathematics, 970, Springer, Berlin (1982)Google Scholar
  7. 7.
    Ianuş, S., Marchiafava, S., Ornea, L., Pantilie, R.: Twistorial maps between quaternionic manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(5), 47–67 (2010)MATHMathSciNetGoogle Scholar
  8. 8.
    Marchiafava, S., Ornea, L., Pantilie, R.: Twistor Theory for CR Quaternionic Manifolds and Related Structures. Monatsh. Math. (in press)Google Scholar
  9. 9.
    Marchiafava, S., Pantilie, R.: Twistor Theory for co-CR Quaternionic Manifolds and Related Structures. Israel J. Math. (to appear; available from
  10. 10.
    Ornea, L., Pantilie, R.: On holomorphic maps and generalized complex geometry. J. Geom. Phys. 61, 1502–1515 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Pantilie, R.: On the classification of the real vector subspaces of a quaternionic vector space. In: Proceedings of the Edinburgh Mathematical Society (2), (to appear; available from

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institutul de Matematică “Simion Stoilow” al Academiei RomâneBucharestRomania

Personalised recommendations