Advertisement

Annali di Matematica Pura ed Applicata

, Volume 192, Issue 6, pp 1141–1152 | Cite as

Invertibility criteria for Wiener–Hopf plus Hankel operators with different almost periodic Fourier symbol matrices

  • L. P. CastroEmail author
  • A. S. Silva
Article

Abstract

Based on the different kinds of auxiliary operators and corresponding operator relations, we will present conditions which characterize the invertibility of matrix Wiener–Hopf plus Hankel operators having different Fourier symbols in the class of almost periodic elements. To reach such invertibility characterization, we introduce a new kind of factorization for AP matrix functions. Additionally, under certain conditions, we will obtain the one-sided and two-sided inverses of the matrix Wiener–Hopf plus Hankel operators in study.

Keywords

Wiener–Hopf operator Hankel operator Almost periodic function Invertibility 

Mathematics Subject Classification (2000)

47B35 47A05 47A20 42A75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bart H., Tsekanovskii V.E.: Matricial coupling and equivalence after extension. Oper. Theory Adv. Appl. 59, 143–160 (1992)MathSciNetGoogle Scholar
  2. 2.
    Bart H., Tsekanovskii V.E.: Complementary Schur complements. Linear Algebra Appl. 197, 651–658 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basor E.L., Ehrhardt T.: On a class of Toeplitz + Hankel operators. N. Y. J. Math. 5, 1–16 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Basor E.L., Ehrhardt T.: Factorization theory for a class of Toeplitz +  Hankel operators. J. Oper. Theory. 51, 411–433 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Basor E.L., Ehrhardt T.: Factorization of a class of Toeplitz +  Hankel operators and the A p–condition. J. Oper. Theory. 55(2), 269–283 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Böttcher A., Karlovich Yu.I., Spitkovsky I.M.: Convolution Operators and Factorization of Almost Periodic Matrix Functions. Birkhäuser, Basel (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Böttcher A., Silbermann B., Karlovich A.: Analysis of Toeplitz Operators, 2nd edn. In: Springer Monographs in Mathematics, Springer, Berlin (2006)Google Scholar
  8. 8.
    Bogveradze G., Castro L.P.: On the Fredholm index of matrix Wiener–Hopf plus/minus Hankel operators with semi-almost periodic symbols. Oper. Theory Adv. Appl. 181, 143–158 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bogveradze G., Castro L.P.: Invertibility properties of matrix Wiener–Hopf plus Hankel integral operators. Math. Model. Anal. 13, 7–16 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bogveradze G., Castro L.P.: Invertibility characterization of Wiener–Hopf plus Hankel operators via odd asymmetric factorizations. Banach J. Math. Anal. 3, 1–18 (2009)MathSciNetGoogle Scholar
  11. 11.
    Castro L.P., Duduchava R., Speck F.-O.: Asymmetric factorizations of matrix functions on the real line. Oper. Theory Adv. Appl. 170, 53–74 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Castro L.P., Nolasco A.P.: A semi-Fredholm theory for Wiener–Hopf-Hankel operators with piecewise almost periodic Fourier symbols. J. Oper. Theory. 62, 3–31 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Castro L.P., Silva A.S.: Invertibility of matrix Wiener–Hopf plus Hankel operators with symbols producing a positive numerical range. Z. Anal. Anwend. 28, 119–127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Castro L.P., Silva A.S.: Fredholm property of matrix Wiener–Hopf plus and minus Hankel operators with semi-almost periodic symbols. Cubo 12, 217–234 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Castro L.P., Speck F.-O.: Regularity properties and generelized inverses of delta-related operators. Z. Anal. Anwend. 17, 577–598 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Castro L.P., Speck F.-O., Teixeira F.S.: A direct approach to convolution type operators with symmetry. Math. Nachr. 269/270, 73–85 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ehrhardt, T.: Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip. Habilitation Thesis, Technischen Universitität Chemnitz, Chemnitz (2004)Google Scholar
  18. 18.
    Ehrhardt T.: Invertibility theory for Toeplitz plus Hankel operators and singular integral operators with flip. J. Funct. Anal. 208, 64–106 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nolasco A.P., Castro L.P.: Factorization theory for Wiener–Hopf plus Hankel operators with almost periodic symbols. Contemp. Math. 414, 111–128 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nolasco A.P., Castro L.P.: A Duduchava–Saginashvili’s type theory for Wiener–Hopf plus Hankel operators. J. Math. Anal. Appl. 331, 329–341 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Power S.C.: C*-algebras generated by Hankel operators and Toeplitz operators. J. Funct. Anal. 31, 52–68 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Roch, S., Silbermann, B.: Algebras of convolution operators and their image in the Calkin algebra. Report MATH 90-05. Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, Berlin (1990)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Center for Research and Development in Mathematics and ApplicationsUniversity of AveiroAveiroPortugal

Personalised recommendations