Advertisement

Annali di Matematica Pura ed Applicata

, Volume 192, Issue 6, pp 1043–1057 | Cite as

Prefactorized subgroups in pairwise mutually permutable products

  • A. Ballester-BolinchesEmail author
  • J. C. Beidleman
  • H. Heineken
  • M. C. Pedraza-Aguilera
Article
  • 127 Downloads

Abstract

We continue here our study of pairwise mutually and pairwise totally permutable products. We are looking for subgroups of the product in which the given factorization induces a factorization of the subgroup. In the case of soluble groups, it is shown that a prefactorized Carter subgroup and a prefactorized system normalizer exist. A less stringent property have \({\mathcal {F}}\) -residual, \({\mathcal F}\) -projector and \({\mathcal {F}}\) -normalizer for any saturated formation \({\mathcal {F}}\) including the supersoluble groups.

Keywords

Finite group Permutability Factorization Saturated formation 

Mathematics Subject Classification (2000)

20D10 20D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amberg B., Franciosi S., de Giovanni F.: Products of Groups. Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  2. 2.
    Ballester-Bolinches, A., Pedraza-Aguilera, M.C., Pérez-Ramos, M.D.: Totally and Mutually Permutable Products of Finite Groups, Groups St. Andrews 1997 in Bath I. London Math. Soc. Lecture Note Ser. 260, 65–68. Cambridge University Press, Cambridge (1999)Google Scholar
  3. 3.
    Ballester-Bolinches A., Pedraza-Aguilera M.C., Pérez-Ramos M.D.: On finite products of totally permutable groups. Bull. Aust. Math. Soc. 53, 441–445 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ballester-Bolinches A., Pedraza-Aguilera M.C., Pérez-Ramos M.D.: Finite groups which are products of pairwise totally permutable subgroups. Proc. Edinb. Math. Soc. 41, 567–572 (1998)CrossRefGoogle Scholar
  5. 5.
    Ballester-Bolinches A., Beidleman J.C., Heineken H., Pedraza-Aguilera M.C.: On pairwise mutually permutable products. Forum Math. 21, 1081–1090 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ballester-Bolinches A., Beidleman J.C., Heineken H., Pedraza-Aguilera M.C.: Local classes and pairwise mutually permutable products of finite groups. Documenta Math. 15, 255–265 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beidleman J.C., Heineken H.: Mutually permutable subgroups and group classes. Arch. Math. 85, 18–30 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beidleman J.C., Heineken H.: Group classes and mutually permutable products. J. Algebra 297, 409–416 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carocca A.: p-supersolvability of factorized groups. Hokkaido Math. J. 21, 395–403 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carocca, A., Maier, R.: Theorems of Kegel-Wielandt Type Groups St. Andrews 1997 in Bath I. London Math. Soc. Lecture Note Ser. 260, 195–201. Cambridge University Press, Cambridge, (1999)Google Scholar
  11. 11.
    Doerk K., Hawkes T.: Finite Soluble Groups. Walter De Gruyter, Berlin (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Maier R., Schmid P.: The embedding of quasinormal subgroups in finite groups. Math. Z. 131, 269–272 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2012

Authors and Affiliations

  • A. Ballester-Bolinches
    • 1
    Email author
  • J. C. Beidleman
    • 2
  • H. Heineken
    • 3
  • M. C. Pedraza-Aguilera
    • 4
  1. 1.Departament d’ÀlgebraUniversitat de ValènciaBurjassot, ValènciaSpain
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA
  3. 3.Institut für MathematikUniversität Würzburg Am HublandWürzburgGermany
  4. 4.Instituto Universitario de Matemática Pura y AplicadaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations