Advertisement

Annali di Matematica Pura ed Applicata

, Volume 191, Issue 2, pp 219–260 | Cite as

Large-time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation

  • Bernard Ducomet
  • Šárka NečasováEmail author
Article

Abstract

We study the large-time behavior of the solution of an initial-boundary value problem for the equations of 1D motions of a compressible viscous heat-conducting gas coupled to radiation through a radiative transfer equation. Assuming suitable hypotheses on the transport coefficients and adapted boundary conditions, we prove that the unique strong solution of this problem converges toward a well-determined equilibrium state at exponential rate.

Keywords

Compressible Viscous Heat-conducting fluids One-dimensional symmetry Radiative transfer 

Mathematics Subject Classification (2000)

35Q30 76N10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antontsev S.N., Kazhikhov A.V., Monakhov V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. North-Holland, Amsterdam, New-York, Oxford, Tokyo (1990)zbMATHGoogle Scholar
  2. 2.
    Brézis H.: Analyse Fonctionnelle. Masson, Paris (1983)zbMATHGoogle Scholar
  3. 3.
    Buet C., Després B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J. Quant. Spectrosc. Radiat. Transf. 85, 385–418 (2004)CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar S.: Radiative Transfer. Dover Publications Inc., New York (1960)Google Scholar
  5. 5.
    Dafermos C.M., Hsiao L.: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. 6, 435–454 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dautray R., Lions J.L.: Analyse Mathématique et Calcul Numërique Pour les Sciences et les Techniques Tome 3. Masson, Paris, New York, Barcelone, Milan, Mexico, Sao Paulo (1985)Google Scholar
  7. 7.
    Dubroca B., Feugeas J.-L.: Etude théorique et numérique d’une hiérarchie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris 329(Série I), 915–920 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ducomet B., Nečasová Š.: Global existence of solutions for the one-dimensional motions of a compressible gas with radiation: An “infrarelativistic model”. Nonlinear Anal. 72, 3258–3274 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ducomet B., Nečasová Š.: Global weak solutions to the 1D compressible Navier–Stokes equations with radiation. Commun. Math. Anal. 8(3), 23–65 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ducomet, B., Nečasová, Š.: Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: the pure scattering case. (in preparation)Google Scholar
  11. 11.
    Ducomet B., Zlotnik A.: Lyapunov functional method for 1D radiative and reactive viscous gas dynamics. Arch. Ration. Mech. Anal. 177, 185–229 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  13. 13.
    Golse, F., Allaire, G.: Transport et diffusion. Cours à l’Ecole Polytechnique, MAP 567 (2009)Google Scholar
  14. 14.
    Golse F., Perthame B.: Generalized solutions of the radiative transfer equations in a singular case. Commun. Math. Phys. 106, 211–239 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hsiao L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific, Singapore, New Jersey, London, Hong Kong (1997)zbMATHGoogle Scholar
  16. 16.
    Hsiao L., Jiang S.: Nonlinear parabolic equations equations and systems. In: Dafermos, C.M., Feireisl, E. (eds) Handbook of Differential Equations, vol. 1, Elsevier, North Holland, Amsterdam, Boston, Heidelberg (2004)Google Scholar
  17. 17.
    Jiang S.: On initial-boundary value problems for a viscous heat-conducting one-dimensional gas. J. Differ. Equ. 110(2), 157–181 (1994)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jiang S.: On the asymptotic behavior of the motion of a viscous heat-conducting one-dimensional real gas. Math. Z. 216, 317–336 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jiang S.: Global smooth solutions to the equations of a viscous heat-conducting one-dimensional gas with density-dependent viscosity. Math. Nachr. 190, 169–183 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Jiang, P., Wang, D.: Formation of Singularities of Solutions to the Three-Dimensional Euler-Boltzmann Equations in Radiation Hydrodynamics. Preprint, March 11 (2009)Google Scholar
  21. 21.
    Jiang P., Wang D.: Global Weak Solutions to the Euler-Boltzmann Equations in Radiation Hydrodynamics. Preprint, June 27 (2009)Google Scholar
  22. 22.
    Kawohl B.: Global existence of large solutions to initial-boundary value problems for a viscous heat-conducting, one-dimensional real gas. J. Differ. Equ. 58(1), 76–103 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kippenhahn R., Weigert A.: Stellar Structure and Evolution. Springer, Berlin, Heidelberg (1994)Google Scholar
  24. 24.
    Ladyženskaja O.A., Solonnikov V.A., Ural’ceva N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS Providence, Rhode Island (1968)Google Scholar
  25. 25.
    Lin, C.: Mathematical Analysis of Radiative Transfer Models. PhD Thesis (2007)Google Scholar
  26. 26.
    Lin C., Coulombel J.-F., Goudon T.: Shock profiles for nonequilibrium radiating gases. Phys. D 218, 83–94 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lowrie R.B., Morel J.E., Hittinger J.A.: The coupling of radiation and hydrodynamics. Astrophys. J. 521, 432–450 (1999)CrossRefGoogle Scholar
  28. 28.
    Mihalas D., Weibel-Mihalas B.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1984)zbMATHGoogle Scholar
  29. 29.
    Okada M., Kawashima S.: On the equations of one-dimensional motion of compressible viscous fluids. J. Math. Kyoto Univ. 23, 55–71 (1983)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Pomraning G.C.: Radiation Hydrodynamics. Dover Publications Inc., Mineola, New York (2005)Google Scholar
  31. 31.
    Qin Y.: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Birkhäuser, Basel, Boston, Berlin (2008)zbMATHGoogle Scholar
  32. 32.
    Zel’dovich Y.B., Raiser Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications Inc., Mineola, New York (2002)Google Scholar
  33. 33.
    Zhong X., Jiang S.: Local existence and finite-time blow-up in multidimensional radiation hydrodynamics. J. Math. Fluid Mech. 9, 543–564 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.Mathematical Institute AS ČRPraha 1Czech Republic

Personalised recommendations