Annali di Matematica Pura ed Applicata

, Volume 191, Issue 1, pp 53–75 | Cite as

Pseudo Leja sequences

  • Leokadia Białas-CieżEmail author
  • Jean-Paul Calvi
Open Access


We study pseudo Leja sequences attached to a compact set in the complex plane. The requirements are weaker than those of ordinary Leja sequences, but these sequences still provide excellent points for interpolation of analytic functions and their computation is much easier. We also apply them to the construction of excellent sets of nodes for multivariate interpolation of analytic functions on product sets.


Leja sequences Equilibrium measure Lagrange interpolation Markov inequality Alper smooth curves (Weakly) admissible meshes 

Mathematics Subject Classification (2000)

41A05 41A63 65E05 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Al’per S.Ya.: On uniform approximations of functions of a complex variable in a closed region. Izv. Akad. Nauk SSSR. Ser. Mat. 19, 423–444 (1955)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Al’per S. Ya.: On the convergence of Lagrange’s interpolational polynomials in the complex domain. Uspehi Mat. Nauk (N.S.) 11(5(71)), 44–50 (1956)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. Electron. Trans. Numer. Anal. 7:124–140 (1998) (electronic), Large scale eigenvalue problems (Argonne, IL, 1997)Google Scholar
  4. 4.
    Białas-Cież L.: Markov sets in C are not polar. Bull. Polish Acad. Sci. Math. 46(1), 83–89 (1998)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bierman O.: Über näherungsweise kubaturen. Monaths. Math. Phys. 14, 211–225 (1903)CrossRefGoogle Scholar
  6. 6.
    Bloom T., Bos L., Christensen C., Levenberg N.: Polynomial interpolation of holomorphic functions in C and C n . Rocky Mountain J. Math. 22(2), 441–470 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bloom T., Calvi J.-P.: The distribution of extremal points for Kergin interpolation: real case. Ann. Inst. Fourier (Grenoble) 48(1), 205–222 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bos, L., Calvi, J.-P., Levenberg, N., Sommariva, A., Vianello, M.: Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points. Preprint (2009), to appear in Math. Comp.Google Scholar
  9. 9.
    Calvi J.-P.: Intertwining unisolvent arrays for multivariate Lagrange interpolation. Adv. Comput. Math. 23(4), 393–414 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Calvi J.-P., Levenberg N.: Uniform approximation by discrete least squares polynomials. J. Approx. Th. 152(1), 82–100 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Calvi, J.-P., Phung, Van, M.: On the Lebesgue constant of Leja sequences for the unit disk and its applications. Preprint (2010)Google Scholar
  12. 12.
    De Marchi S.: On Leja sequences: some results and applications. Appl. Math. Comput. 152(3), 621–647 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Edrei A.: Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement. Compositio Math. 7, 20–88 (1939)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Fischer B., Reichel L.: A stable Richardson iteration method for complex linear systems. Numer. Math. 54(2), 225–242 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fischer B., Reichel L.: Newton interpolation in Fejér and Chebyshev points. Math. Comp. 53(187), 265–278 (1989)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Gaier, D.: Lectures on complex approximation. Birkhäuser Boston Inc., Boston, MA, 1987. Translated from the German by Renate McLaughlinGoogle Scholar
  17. 17.
    Kövari T., Pommerenke Ch.: On the distribution of Fekete points. Mathematika 15, 70–75 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Leja F.: Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Ann. Polon. Math. 4, 8–13 (1957)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Phung, Van M.: On the limit points of pseudo Leja sequences. Preprint (2010)Google Scholar
  20. 20.
    Pommerenke Ch.: On the derivative of a polynomial. Michigan Math. J. 6, 373–375 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Pommerenke Ch.: Über die Verteilung der Fekete-Punkte. Math. Ann. 168, 111–127 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Pommerenke Ch.: Über die Verteilung der Fekete-Punkte. II. Math. Ann. 179, 212–218 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Pommerenke Ch.: Boundary behaviour of conformal maps volume 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1992)Google Scholar
  24. 24.
    Ransford T.: Potential theory in the complex plane volume 28 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1995)Google Scholar
  25. 25.
    Reichel L.: Newton interpolation at Leja points. BIT 30(2), 332–346 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Saff, E.B., Totik, V: Logarithmic potentials with external fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1997). Appendix B by Thomas BloomGoogle Scholar
  27. 27.
    Siciak J.: On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Amer. Math. Soc. 105, 322–357 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Smirnov, V.I., Lebedev, N.A.: Functions of a complex variable: Constructive theory. Translated from the Russian by Scripta Technica Ltd. The M.I.T. Press, Cambridge (1968)Google Scholar
  29. 29.
    Taylor R., Totik V.: Lebesgue constants for Leja points. IMA J. Numer Anal. 30, 462–486 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Tsuji, M: Potential theory in modern function theory. Chelsea Publishing Co., New York (1975). Reprinting of the 1959 originalGoogle Scholar
  31. 31.
    Walsh, J.L: Interpolation and approximation by rational functions in the complex domain. Fourth edition. American Mathematical Society Colloquium Publications, Vol XX. American Mathematical Society, Providence, RI (1965)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Institut de MathématiquesUniversité de Toulouse III and CNRS (UMR 5219)Toulouse Cedex 9France

Personalised recommendations