Advertisement

Annali di Matematica Pura ed Applicata

, Volume 190, Issue 3, pp 395–408 | Cite as

Critical oscillation constant for half-linear differential equations with periodic coefficients

  • Ondřej DošlýEmail author
  • Petr Hasil
Article

Abstract

We compute explicitly the oscillation constant for certain half-linear second-order differential equations involving periodic coefficients. If these periodic functions are constants, our results reduce to the well-known oscillation constants for half-linear Euler and Riemann–Weber differential equations.

Keywords

Half-linear differential equation Euler equation Riemann–Weber equation Prüfer transformation Critical oscillation constant 

Mathematics Subject Classification (2000)

34C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas D.P.: Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1999)zbMATHGoogle Scholar
  2. 2.
    Došlý O.: Perturbations of the half-linear Euler-Weber type differential equation. J. Math. Anal. Appl. 323, 426–440 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Došlý O., Ünal M.: Linearly independent solutions of half-linear differential equations. Nonlinear Anal. 71, 4026–4033 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Došlý O., Řehák P.: Half-linear Differential Equations. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar
  5. 5.
    Elbert Á.: A half-linear second order differential equation. Colloq. Math. Soc. Janos Bolyai 30, 158–180 (1979)Google Scholar
  6. 6.
    Elbert Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hung. 19, 447–464 (1984)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Elber Á., Schneider A.: Perturbations of half-linear Euler differential equation. Result Math. 37, 56–83 (2000)Google Scholar
  8. 8.
    Hasil P.: Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. (Brno) 44, 119–131 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Krüger H., Teschl G.: Effective Prüfer angles and relative oscillation criteria. J. Differ. Equ. 245, 3823–3848 (2009)CrossRefGoogle Scholar
  10. 10.
    Schmidt K.M.: Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane. Proc. Am. Math. Soc. 127, 2367–2374 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Schmidt K.M.: Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators. Commun. Math. Phys. 211, 465–485 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sugie J., Yamaoka N.: Comparison theorems for oscillation of second-order half-linear differential equations. Acta Math. Hungar. 111, 165–179 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Swanson C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, London (1968)zbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic
  2. 2.Department of MathematicsMendel University in BrnoBrnoCzech Republic

Personalised recommendations