Annali di Matematica Pura ed Applicata

, Volume 190, Issue 1, pp 165–194 | Cite as

Quasistatic crack growth in finite elasticity with Lipschitz data



We extend the recent existence result of Dal Maso and Lazzaroni (Ann Inst H Poincaré Anal Non Linéaire 27:257–290, 2010) for quasistatic evolutions of cracks in finite elasticity, allowing for boundary conditions and external forces with discontinuous first derivatives.


Variational models Energy minimization Free-discontinuity problems Polyconvexity Quasistatic evolution Rate-independent processes Brittle fracture Crack propagation Griffith’s criterion Finite elasticity Non-interpenetration 

Mathematics Subject Classification (2000)

35R35 74R10 74B20 49J45 49Q20 35A35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amar, M., De Cicco, V., Fusco, N.: Lower semicontinuity results for free discontinuity energies. To appear on Math. Models Methods Appl. Sci.Google Scholar
  2. 2.
    Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (2000)Google Scholar
  3. 3.
    Aronszajn N.: Differentiability of Lipschitzian mappings between Banach spaces. Stud. Math. 57, 147–190 (1976)MATHMathSciNetGoogle Scholar
  4. 4.
    Ball J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Bourdin B., Francfort G.A., Marigo J.-J.: The variational approach to fracture. J. Elastic. 91, 5–148 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies vol. 5, Notas de Matemática vol. 50, North-Holland, Amsterdam-London, American Elsevier, New York (1973)Google Scholar
  7. 7.
    Chambolle A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Rational Mech. Anal. 167, 211–233 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ciarlet P.G., Nečas J.: Injectivity and self–contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97, 171–188 (1987)CrossRefGoogle Scholar
  9. 9.
    Dal Maso G., Francfort G.A., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dal Maso G., Lazzaroni G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 257–290 (2010)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dal Maso, G., Lazzaroni, G.: Crack growth with non-interpenetration: a simplified proof for the pure Neumann problem. Preprint SISSA 70/2009/M (
  12. 12.
    Dal Maso G., Toader R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal. 162, 101–135 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dunford, N., Schwartz, J.T.: Linear operators—Part I: general theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. A Wiley-Interscience Publication, Wiley Classics Library, John Wiley & Sons, Inc., New York (1988)Google Scholar
  14. 14.
    Francfort G.A., Larsen C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Comm. Pure Appl. Math. 56, 1465–1500 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Francfort G.A., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Francfort G.A., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)MATHMathSciNetGoogle Scholar
  17. 17.
    Fusco N., Leone C., March R., Verde A.: A lower semi-continuity result for polyconvex unctionals in SBV. Proc. Roy. Soc. Edinb. Sect. A 136, 321–336 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Giacomini A., Ponsiglione M.: Non interpenetration of matter for SBV-deformations of hyperelastic brittle materials. Proc. Roy. Soc. Edinb. Sect. A 138, 1019–1041 (2008)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Griffith A.A.: The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A 221, 163–198 (1920)CrossRefGoogle Scholar
  20. 20.
    Hahn H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)Google Scholar
  21. 21.
    Mielke A.: Evolution of rate-independent systems. In: Dafermos, C.M., Feireisl, E. (eds) Evolutionary Equations. Handbook of Differential Equations, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2010

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.Institut d’AlembertUniversité Paris 6 “Pierre et Marie Curie”Paris Cedex 05France

Personalised recommendations