Annali di Matematica Pura ed Applicata

, Volume 188, Issue 2, pp 247–267 | Cite as

A renormalization approach to irrational rotations

  • Claudio Bonanno
  • Stefano IsolaEmail author


We introduce a renormalization procedure which allows us to study in a unified and concise way different properties of the irrational rotations on the unit circle \(\beta \mapsto \{\alpha + \beta\}\) , \(\alpha \in {\mathbb{R}}\!\setminus\! {\mathbb{Q}}\) . In particular, we obtain sharp results for the diffusion of the walk on \({\mathbb{Z}}\) generated by the location of points of the sequence {n α + β} on a binary partition of the unit interval. Finally, we give some applications of our method.


Irrational rotations Continued fractions Renormalization Diffusion 

Mathematics Subject Classification (2000)

37E05 37A25 37A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamczewski B. (2004). Répartition des suites \((n\alpha)_{n\in{\mathbb{N}}}\) et substitutions. Acta Arith. 112: 1–22 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bonanno C., Galatolo S. and Isola S. (2004). Recurrence and algorithmic information. Nonlinearity 17: 1057–1074 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chazottes J.-R. and Durand F. (2005). Local rates of Poincaré recurrence for rotations and weak mixing. Discret. Contin. Dyn. Syst. 12: 175–183 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Coelho Z. and de Faria E. (1996). Limit laws of entrance times for homeomorphisms of the circle. Isr. J. Math. 93: 93–112 zbMATHCrossRefGoogle Scholar
  5. 5.
    Dupain Y. and Sós V.T. (1984). On the discrepancy of {n α} sequences. In: Halász, G. (eds) Topics in Classical Number Theory, vol. I. Colloquia Mathematica Societatis János Bolyai, vol. 34, pp 355–387. North-Holland, Amsterdam Google Scholar
  6. 6.
    Isola, S.: Dispersion properties of ergodic translations. Int. J. Math. Math. Sci., vol. 2006, Art.20568 (2006)Google Scholar
  7. 7.
    Kim D.H. (2006). The recurrence time for irrational rotations. Osaka J. Math. 43: 351–364 zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kim D.H. and Seo B.K. (2003). The waiting time for irrational rotations. Nonlinearity 16: 1861–1868 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kuipers L. and Niederreiter H. (1974). Uniform Distribution of Sequences. Wiley, New York zbMATHGoogle Scholar
  10. 10.
    Lanford, O.E.: Renormalization group methods for circle mappings. In: Nonlinear Evolution and Chaotic Phenomena, NATO Advanced Science Institute Series B, Physics, vol. 176, pp. 25–36. Plenum, New York (1988)Google Scholar
  11. 11.
    Pinner C. (1997). On sums of fractional parts {n αγ}. J. Number Theory 65: 48–73 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pytheas Fogg N. (2002). Subsitutions in dynamics, arithmetics and combinatorics. In: Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A. (eds) Lecture Notes in Mathematics, vol 1794. Springer, BerlinGoogle Scholar
  13. 13.
    Schoissengeier J. (1993). The discrepancy of {n α}. Math. Ann. 296: 529–545 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sós, V.T.: On the discrepancy of the sequence {n α}. Coll. Math. Soc. J. Bolyai 13, 359–367 (1976) [Topics in Number Theory, ed. Turán P. (ed.)]Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Matematica ApplicataUniversità di PisaPisaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CamerinoCamerinoItaly

Personalised recommendations