Annali di Matematica Pura ed Applicata

, Volume 184, Issue 4, pp 533–553 | Cite as

On the isoperimetric problem in the Heisenberg group ℍ n

Article

Abstract

It has been recently conjectured that, in the context of the Heisenberg group ℍ n endowed with its Carnot–Carathéodory metric and Haar measure, the isoperimetric sets (i.e., minimizers of the ℍ-perimeter among sets of constant Haar measure) could coincide with the solutions to a “restricted” isoperimetric problem within the class of sets having finite perimeter, smooth boundary, and cylindrical symmetry. In this paper, we derive new properties of these restricted isoperimetric sets, which we call Heisenberg bubbles. In particular, we show that their boundary has constant mean ℍ-curvature and, quite surprisingly, that it is foliated by the family of minimal geodesics connecting two special points. In view of a possible strategy for proving that Heisenberg bubbles are actually isoperimetric among the whole class of measurable subsets of ℍ n , we turn our attention to the relationship between volume, perimeter, and ε-enlargements. In particular, we prove a Brunn–Minkowski inequality with topological exponent as well as the fact that the ℍ-perimeter of a bounded, open set F⊂ℍ n of class C2 can be computed via a generalized Minkowski content, defined by means of any bounded set whose horizontal projection is the 2n-dimensional unit disc. Some consequences of these properties are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrachev, A.A., Sachkov, Yu.L.: Control Theory from the Geometric Viewpoint. Lecture notes S.I.S.S.A. (2002)Google Scholar
  2. 2.
    Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159, 51–67 (2001)Google Scholar
  3. 3.
    Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318, 527–555 (2000)Google Scholar
  4. 4.
    Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185, 1–80 (2000)Google Scholar
  5. 5.
    Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian geometry, pp. 1–78. Basel: Birkhäuser 1996Google Scholar
  6. 6.
    Brakke, K.A.: The surface evolver. Exp. Math. 1, 141–165 (1992)Google Scholar
  7. 7.
    Burago, Yu.D., Zalgaller, V.A.: Geometric inequalities. Translated from the Russian by A.B. Sosinskii. Springer Series in Soviet Mathematics. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  8. 8.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. In: Birindelli, I., Gutierez, C., Lanconelli, E. (eds.): Proceedings of the workshop on second order subelliptic equations and applications, Cortona, June 16–22, 2003. Lecture Notes of Seminario Interdisciplinare di Matematica 3, 145–161 (2004)Google Scholar
  9. 9.
    De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5, 33–44 (1958)Google Scholar
  10. 10.
    Federer, H.: Geometric Measure Theory. Berlin, Heidelberg, New York: Springer 1969Google Scholar
  11. 11.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton, NJ: Princeton University Press 1989Google Scholar
  12. 12.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton, NJ: Princeton University Press 1982Google Scholar
  13. 13.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22, 859–889 (1996)Google Scholar
  14. 14.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321, 479–531 (2001)Google Scholar
  15. 15.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in step 2 groups. Math. Bohem. 127, 219–228 (2002)Google Scholar
  16. 16.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Regular hypersurfaces, Intrinsic perimeter and implicit function theorem in Carnot groups. Commun. Anal. Geom. 11, 909–944 (2003)Google Scholar
  17. 17.
    Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)Google Scholar
  18. 18.
    Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)Google Scholar
  19. 19.
    Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139, 95–153 (1977)Google Scholar
  20. 20.
    Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, pp. 79–323. Basel: Birkhäuser 1996Google Scholar
  21. 21.
    Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houston J. Math. 29, 609–637 (2003)Google Scholar
  22. 22.
    Magnani, V.: Differentiability and area formula on stratified Lie groups. Houston J. Math. 27, 297–323 (2001)Google Scholar
  23. 23.
    Montefalcone, F.: Sets of finite perimeter associated with vector fields and polyhedral approximation. Rend. Mat. Acc. Lincei 14, 270–295 (2003)Google Scholar
  24. 24.
    Montgomery, R.: A tour of subriemannian geometry. Math. Surveys and Monographs, vol. 91, pp. xx + 259. Providence, RI: American Mathematical Society 2002Google Scholar
  25. 25.
    Monti, R.: Some properties of Carnot-Carathéodory balls in the Heisenberg group. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. IX. Ser., Rend. Lincei, Mat. Appl. 11, 155–167 (2001)Google Scholar
  26. 26.
    Monti, R.: Brunn-Minkowski and isoperimetric inequality in the Heisenberg group. Ann. Acad. Sci. Fenn. Math. 28, 99–109 (2003)Google Scholar
  27. 27.
    Monti, R., Serra Cassano, F.: Surfaces measures in Carnot-Carathéodory spaces. Calc. Var. 13, 339–376 (2001)Google Scholar
  28. 28.
    Monti, R., Morbidelli, D.: Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14, 355–368 (2004)Google Scholar
  29. 29.
    Pansu, P.: Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris, Sér. I, Math. 295, 127–130 (1982)Google Scholar
  30. 30.
    Pansu, P.: An isoperimetric inequality on the Heisenberg group. Conference on differential geometry on homogeneous spaces (Turin 1983). Rend. Semin. Mat., Torino, Special Issue, 159–174 (1984)Google Scholar
  31. 31.
    Pauls, S.: Minimal surfaces in the Heisenberg group. Geom. Dedicata 104, 201–231 (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Dipartimento di Metodi e Modelli MatematiciUniversità di PadovaPadovaItaly
  2. 2.Laboratoire Jacques-Louis Lions, B.C. 187Université Pierre-et-Marie-CurieParis Cedex 05France

Personalised recommendations