Annali di Matematica Pura ed Applicata (1923 -)

, Volume 184, Issue 3, pp 361–374

The clamped-plate equation for the limaçon

Article

Abstract

Hadamard claimed in 1907 that the clamped-plate equation is positivity preserving for domains which are bounded by a Limaçon de Pascal. We will show that this claim is false in its full generality. However, we will also prove that there are nonconvex limaçons for which the clamped-plate equation has the sign-preserving property. In fact we will give an explicit bound for the parameter of the limaçon where sign change may occur.

Keywords

clamped plate biharmonic positivity nonconvex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boggio, T.: Sulle funzioni di Green d’ordine m. Rend. Circ. Mat. Palermo, II. Ser. 20, 97–135 (1905)CrossRefGoogle Scholar
  3. 3.
    Duffin, R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253–258 (1949)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dube, R.S.: Green’s function of an elastic plate in the shape of Pascal’s Limacon and clamped along the boundary. Indian J. Pure Appl. Math. 2, 59–68 (1971)Google Scholar
  5. 5.
    Garabedian, P.R.: A partial differential equation arising in conformal mapping. Pacific J. Math. 1, 485–524 (1951)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grunau, H.-Ch., Sweers, G.: Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions. Math. Nachr. 179, 89–102 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grunau, H.-Ch., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary condition. Math. Ann. 307, 589–626 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grunau, H.-Ch., Sweers, G.: Sign change for the Green function and the first eigenfunction of equations of clamped-plate type. Arch. Ration. Mech. Anal. 150, 179–190 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grunau, H.-Ch., Sweers, G.: Sharp estimates for iterated Green function. Proc. R. Soc. Edinb., Sect. A, Math. 132, 91–120 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hadamard, J.: Memoire sur le probleme d’analyse relatif a l’equilibrie des plaques elastiques encastrees. In: OEuvres de Jacques Hadamard, Tomes II, Éditions du Centre National de la Recherche Scientifique, Paris 1968, pp. 515–641. Reprint of: Mèmoire couronne par l’Acadèmie des Sciences (Prix Vaillant). Mèm. Sav. Etrang. 33 (1907)Google Scholar
  11. 11.
    Hadamard, J.: Sur certains cas interessants du probleme biharmonique. In: OEuvres de Jacques Hadamard, Tomes III, Éditions du Centre National de la Recherche Scientifique, Paris 1968, pp. 1297–1299. Reprint of: IV Congr. Math. (1908) RomeGoogle Scholar
  12. 12.
    Schot, S.H.: The Green’s Functions Method for the Supported Plate Boundary Value Problem. Z. Anal. Anwend. 11, 359–370 (1992)MathSciNetGoogle Scholar
  13. 13.
    Sen, B.: Note on the bending of thin uniformly loaded plates bounded by cardioids, lemniscates and certain other quartic curves. Z. Angew. Math. Mech. 20, 99–103 (1940)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign? Electron. J. Differ. Equ. 6, 285–296 (2001)MathSciNetGoogle Scholar
  15. 15.
    Szegö, G.: On membranes and plates. Proc. Natl. Acad. Sci. USA 36, 210–216 (1950)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Applied Mathematical Analysis, ITS FacultyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations