Advertisement

The Release of Dissolved Organic Matter and Inorganic Nitrogen from Coal Gangue of Different Geologic Ages in North China

  • Li Zhao
  • Lei Zhang
  • Yanfang Sun
  • Mingshi WangEmail author
  • Qing Zhang
  • Shaohe Luo
  • Jianlin Li
Technical Article
  • 5 Downloads

Abstract

Static leaching experiments lasting 480 h were performed to investigate the release of dissolved organic matter (DOM) and inorganic nitrogen from coal gangues collected from the Jurassic Middle-Lower Yan′an formation in the Bulianta coal mine (CG1) and the Permian Shanxi formation in the Baode coal mine (CG2) in North China. The amounts of dissolved organic carbon (DOC), NH4+–N, NO3–N, and NO2–N released from CG1 were all much higher than those from CG2, as was the electrical conductivity. These were highly correlated with the mineral and chemical composition and lithology. The fluorescence, biological, and humification indices for the leachates were indicative of autochthonous microbial processes that occurred during DOM formation. In addition, the specific ultraviolet absorbance at 254 nm (SUVA254) and fluorescence intensities (divided by DOC) of peaks B1, B2, T2, and A indicated that more microbial and less plant precursors in the DOM were released from CG2 than from CG1. Adsorption and denitrification of NH4+–N and NO3–N released from CG1 and CG2 were observed. These results should be useful in assessing the environmental impacts caused by the DOM and nitrogen released from coal gangue.

Keywords

Coal-forming age Fluorescence Autochthonous microbial process 

Zusammenfassung

Statische Laugungsexperimente wurden über 480 Stunden durchgeführt, um die Freisetzung von gelösten organischen Stoffen (DOM) und anorganischem Stickstoff aus Kohleflözen zu untersuchen, die aus der Mittleren und Unteren Yan’an Jura-Formation in der Bulianta-Kohlemine (CG1) und der Shanxi-Formation des Perm in der Kohlemine Baode (CG2) in Nordchina gewonnen wurden. Die Mengen an gelöstem organischem Kohlenstoff (DOC), NH4+-N, NO3-N und NO2-N, die von CG1 freigesetzt wurden, waren alle viel höher als die von CG2, ebenso wie die elektrische Leitfähigkeit. Diese Freisetzung korrelierte stark mit der mineralischen und chemischen Zusammensetzung und der Lithologie. Die Fluoreszenz, biologischen Indices und Humifizierungsindizes für die Auslaugungsprodukte zeigten autochthone mikrobielle Prozesse an, die während der DOM-Bildung auftraten. Zusätzlich zeigten die spezifische Ultraviolettabsorption bei 254 nm (SUVA254) und die Fluoreszenzintensitäten (dividiert durch DOC) der Peaks B1, B2, T2 und A, dass im DOM mehr mikrobielle und weniger Pflanzenvorläufer aus CG2 freigesetzt wurden als aus CG1. Zudem wurden Adsorption und Denitrifikation von NH4+-N und NO3-N beobachtet, die aus CG1 und CG2 freigesetzt wurden. Diese Ergebnisse sollten nützlich sein, um die Umweltauswirkungen des DOM und des Stickstoffs zu bewerten, die von Kohleflözen freigesetzt werden.

Resumen

Se realizaron experimentos de lixiviación estática durante 480 h para investigar la liberación de materia orgánica disuelta (DOM) y de nitrógeno inorgánico de gangas de carbón recolectadas de la formación jurásica de Yan’an del Medio-Bajo en la mina de carbón Bulianta (CG1) y de la formación Pérmica Shanxi en la mina de carbón Baode (CG2) en el norte de China. Las cantidades de carbono orgánico disuelto (DOC), NH4+-N, NO3−-N y NO2−-N liberados de CG1 fueron mucho más altas que las de CG2, al igual que la conductividad eléctrica. Hubo una fuerte correlación con la composición mineralógica y química y la litología. Los índices de fluorescencia, biológico y de humificación para los lixiviados fueron indicativos de procesos microbianos autóctonos que ocurrieron durante la formación de DOM. Además, la absorbancia ultravioleta específica a 254 nm (SUVA254) y las intensidades de fluorescencia (divididas por DOC) de los picos B1, B2, T2 y A indicaron que se liberaron más precursores de plantas microbianas y menos en el DOM del CG2 que del CG1. Se observó adsorción y desnitrificación de NH4+-N y NO3--N liberado de CG1 y CG2. Estos resultados deberían ser útiles para evaluar los impactos ambientales causados por el DOM y el nitrógeno liberado de la ganga del carbón.

华北地区不同地质年代煤矸石中水溶性有机质和无机氮的释放规律

利用480h静态浸溶试验 , 研究了华北地区补连塔煤矿侏罗系中下统延安组矸石(CG1)和保德煤矿二叠系山西组煤矸石(CG2)的水溶性有机物(DOM)和无机氮的释放规律。研究结果表明 , CG1释放的溶解性有机碳(DOC)、NH4+-N、NO3--N和NO2--N明显高于CG2 , 其电导率值也显著高于CG2 , 这与它们的矿物组分、化学成分和岩性密切相关。渗出液的荧光、生物和腐殖质指数表明矸石中DOM的形成具有显著的“自生源”微生物过程特征。此外 , 水样波长254nm特定紫外吸收(SUVA254)和B1、B2、T2和A峰的单位有机碳的荧光强度表明 , 与CG1相比 , CG2溶出的DOM中具有更多的微生物前驱体但是植物前驱体较少的。实验过程中矸石释放出的氨氮和硝态氮还分别出现了吸附和反硝化作用。研究结果有益于评价煤矸石DOM和氮释放对环境的影响。

Notes

Acknowledgements

This work was financially supported by the: National Natural Science Foundation of China (Grant 41402216), Foundation of Key Scientific Research Projects of Henan Colleges and Universities in 2019 (19A170008), Key Laboratory of Mine Geological Hazards Mechanism and Control and Department of Land and Resources of Shaanxi Province Foundation (KF2018-06), the China Postdoctoral Science Foundation (Grant No. 2016M602239) and the Henan Provincial Natural Science Foundation Project (182300410155).

References

  1. Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Sci Total Environ 407:2461–2473CrossRefGoogle Scholar
  2. Benedetti MF, Van-Riemsdijk WH, Koopal LK, Kinniburgh DG, Gooddy DC, Milne CJ (1996) Metal ion binding by natural organic matter: from the model to the field. Geochim Cosmochim Acta 60:2503–2513CrossRefGoogle Scholar
  3. Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280CrossRefGoogle Scholar
  4. Carstea EM, Bridgeman J, Baker A, Reynolds DM (2016) Fluorescence spectroscopy for wastewater monitoring: a review. Water Res 95:205–219CrossRefGoogle Scholar
  5. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710CrossRefGoogle Scholar
  6. Chen ZM, Ding WX, Xu YH, Müller C, Rütting T, Yu HY, Fan JL, Zhang JB, Zhu TB (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidence from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75CrossRefGoogle Scholar
  7. China Electric Power Yearbook (2014) China Electric Power Publishing House, BeijingGoogle Scholar
  8. CIA Factbook (2014) The World Factbook 2014. Central Intelligence Agency, http://www.stats.gov.cn/tjsj/ndsj//indexch.htm
  9. Cory RM, Miller MP, McKnight DM, Guerard JJ, Miller APL (2010) Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Methods 8:67–78Google Scholar
  10. Cui XW, Hong JL, Gao MM (2012) Environmental impact assessment of three coal-based electricity generation scenarios in China. Energy 45:952–959CrossRefGoogle Scholar
  11. De BW, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866CrossRefGoogle Scholar
  12. Edzwald JK (1993) Coagulation in drinking water treatment: particles, organics and coagulants. Water Sci Technol 27:21–35CrossRefGoogle Scholar
  13. Fan JS, Sun YZ, Li XY, Zhao CL, Tian DX, Shao LY, Wang JX (2013) Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan coal mine, China. Chin J Geochem 32:241–247CrossRefGoogle Scholar
  14. Fu TL, Wu YG, Ou LS, Yang G, Liang TC (2012) Effects of thin covers on the release of coal gangue contaminants. Energy Proc 16A:327–333CrossRefGoogle Scholar
  15. Ge SJ, Peng YZ, Wang SY, Lu CC, Cao X, Zhu YP (2012) Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3–N. Bioresour Technol 114:137–143CrossRefGoogle Scholar
  16. He ZQ, Mao JD, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ (2009) Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biol Fertil Soils 45:609–616CrossRefGoogle Scholar
  17. Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7:375–380CrossRefGoogle Scholar
  18. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719CrossRefGoogle Scholar
  19. Jabłońska B, Kityk AV, Busch M, Huber P (2017) The structural and surface properties of natural and modified coal gangue. J Environ Manag 190:80–90CrossRefGoogle Scholar
  20. Kalbita K, Schmerwita J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291CrossRefGoogle Scholar
  21. Kang Y, Liu GJ, Chou CL, Wong MH, Zheng LG, Ding R (2011) Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects. Sci Total Environ 412–413:1–13CrossRefGoogle Scholar
  22. Leenheer JA, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63:936–940CrossRefGoogle Scholar
  23. Li ZM (1992) Lake shallowing process and coal accumulation in the Jurassic Ordos Depressional Basin-Example from Yuli-Hengshan area. Geological Publishing Press, Beijing (in Chinese) Google Scholar
  24. Li C, Benjamin MM, Korshin GV (2006) Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy. J Environ Eng Sci 5:467–472CrossRefGoogle Scholar
  25. Lin H, Li GY, Dong YB, He YH (2017) Effect of pH on the release of heavy metals from stone coal waste rocks. Int J Miner Process 165:1–7CrossRefGoogle Scholar
  26. Liu HB, Liu ZL (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recycl 54:1331–1340CrossRefGoogle Scholar
  27. Liu BW, Tang ZH, Dong SG, Wang LX, Liu DW (2018) Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application. Int Biodeterior Biodegrad 128:134–140CrossRefGoogle Scholar
  28. Liu Y, Wang TT, Yang J (2019) Evaluating the quality of mine water using hierarchical fuzzy theory and fluorescence regional integration. Mine Water Environ 38:243–251CrossRefGoogle Scholar
  29. Mcknight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48CrossRefGoogle Scholar
  30. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746CrossRefGoogle Scholar
  31. Othmani MA, Souissi F, Benzaazoua M, Bouzahzah H, Bussiere B, Mansouri A (2013) The geochemical behaviour of mine tailings from the touiref Pb–Zn district in tunisia in weathering cells leaching tests. Mine Water Environ 32:28–41CrossRefGoogle Scholar
  32. Qian JZ, Wang XX, Lei M, Wang LP, Liu JK, Yang ZX (2018) Simulation of denitrification in groundwater from Chaohu Lake Catchment, China. Water Sci Eng 11:114–119CrossRefGoogle Scholar
  33. Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X, Lu W, Wang Y (2008) Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi province, China. Int J Coal Geol 75:93–104CrossRefGoogle Scholar
  34. Ribeiro J, Silva T, Filho JGM, Flores D (2012) Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. J Hazard Mater 199–200:105–110CrossRefGoogle Scholar
  35. Sun YZ, Fan JS, Qin P, Niu HY (2009) Pollution extents of organic substances from a coal gangue dump of Jiulong coal mine, China. Environ Geochem Health 31:81–89CrossRefGoogle Scholar
  36. Tye AM, Lapworth DJ (2016) Characterising changes in fluorescence properties of dissolved organic matter and links of N cycling in agricultural floodplains. Agric Ecosyst Environ 221:245–257CrossRefGoogle Scholar
  37. Wang DD (2012) Sequence of Mid-Jurassic Yan’an formation in Ordos Basin—paleogeography and coal accumulation rule. China Univ of Mining and Technology, Beijing (in Chinese) Google Scholar
  38. Wang XM, Zhou CC, Liu GJ, Dong ZB (2013) Transfer of metals from soil to crops in an area near a coal gangue pile in the Guqiao coal mine, China. Anal Lett 46:1962–1977CrossRefGoogle Scholar
  39. Wang H, Holden J, Zhang ZJ, Li M, Li X (2014a) Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimental warming. Sci Total Environ 470–471:907–916CrossRefGoogle Scholar
  40. Wang WF, Hao WD, Bian ZF, Lei SG, Wang XS, Sang SX, Xu SC (2014b) Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China—a geochemical perspective. Int J Coal Geol 132:94–102CrossRefGoogle Scholar
  41. Weishaar JL, Aiken GR, Bergamaschi BA (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708CrossRefGoogle Scholar
  42. Wu H, Wen Q, Hu L, Gong M, Tang Z (2017) Feasibility study on the application of coal gangue as landfill liner material. Waste Manag 63:161–171CrossRefGoogle Scholar
  43. Xiao XY, Yang M, Guo ZH, Jiang ZC, Liu YN, Cao X (2015) Soil vanadium pollution and microbial response characteristics from stone coal smelting district. Trans Nonferrous Met Soc China 25:1271–1278CrossRefGoogle Scholar
  44. Xu LC, Zou YJ, Guo YH (2013) Study on Shanxi Formation sedimentary facies in northern part of Hedong coalfield. Coal Geol China 25:18–24 (in Chinese) Google Scholar
  45. Yan YL, Yang C, Peng L, Li RM, Bai HL (2016) Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China. Atmos Environ 143:261–269CrossRefGoogle Scholar
  46. Yu HB, Song YH, Liu RX, Pan HW, Xiang LC, Qian F (2014) Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment. Chemosphere 113:79–86CrossRefGoogle Scholar
  47. Yue M, Zhao F (2008) Leaching experiments to study the release of trace elements from mineral separates from Chinese coal. Int J Coal Geol 73:43–51CrossRefGoogle Scholar
  48. Yun Y, Gao R, Yue HF, Liu XF, Li GK, Sang N (2017) Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis. Sci Total Environ 580:632–640CrossRefGoogle Scholar
  49. Zhang YL, Zhang EL, Yin Y, Dijk MAV, Feng LQ, Shi ZQ, Liu ML, Qin BQ (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol Oceanogr 55:2645–2659CrossRefGoogle Scholar
  50. Zhang YY, Ge XL, Liu LL, Wang XD, Zhang ZT (2015) Fuel nitrogen conversion and release of nitrogen oxides during coal gangue calcination. Environ Sci Pollut Res 22:7139–7146CrossRefGoogle Scholar
  51. Zhao L, Wang XY, Zhang Q, Zhang YX (2014) Study on the transformation mechanism of nitrate in a loose-pore geothermal reservoir: experimental results and numerical simulations. J Geochem Explor 144:208–215CrossRefGoogle Scholar
  52. Zhao L, Li YL, Wang SD, Wang XY, Meng HQ, Luo SH (2016) Adsorption and transformation of ammonium ion in a loose-pore geothermal reservoir: batch and column experiments. J Contam Hydrol 192:50–59CrossRefGoogle Scholar
  53. Zhao L, Zhao Y, Wang XY, Yang J, Luo SH, Tian YF, Zhen XG (2018) Dynamic changes of dissolved organic matter during nitrate transport in a loose-pore geothermal reservoir. Chem Geol 487:76–85CrossRefGoogle Scholar
  54. Zhao L, Sun C, Yan PX, Zhang Q, Wang SD, Luo SH, Mao YX (2019a) Dynamic changes of nitrogen and dissolved organic matter during the transport of mine water in a coal mine underground reservoir: column experiments. J Contam Hydrol 223:103473CrossRefGoogle Scholar
  55. Zhao L, Sun YF, Luo SH, Wang SD, Zhang L, Lv JW, Song YY (2019b) Dissolution characteristics of inorganic nitrogen and heavy metals in coal gangue from Bulianta and Baode mines. J Arid Land Resour Environ 33:172–177 (in Chinese) Google Scholar
  56. Zhou CC, Liu GJ, Fang T, Wu D, Lam PKS (2014) Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue. Fuel 135:1–8CrossRefGoogle Scholar
  57. Zhu YM, Guo YH, Zeng Y, Li ZF (2016) Coal mine geology. China University of Mining and Technology Press, Xuzhou (in Chinese) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Resources and EnvironmentHenan Polytechnic UniversityJiaozuoChina
  2. 2.Key Laboratory of Mine Geological Hazards Mechanism and ControlXi’anChina
  3. 3.Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic RegionJiaozuoChina

Personalised recommendations