Advertisement

The Effect of Particle Size on Mine Waste Sulfide Oxidation Rates and Conceptual Treatment Costs

  • D. DettrickEmail author
  • N. Bourgeot
  • J. Costelloe
  • S. Yuen
  • M. Arora
Technical Article
  • 13 Downloads

Abstract

Acid and metalliferous drainage (AMD) oxidation reaction rates were determined using oxygen consumption rates in a high sulfur overburden rock from the Australian Latrobe Valley coal provinces, and a mid to low range sulfur waste rock from a porphyry copper deposit in Papua, New Guinea. Nine grain sizes were tested, ranging from material retained by a 0.038 mm sieve through to a 40 mm sieve. Oxygen consumption rates in sealed cells were measured to establish pyrite oxidation rates (POR) in each sample. The oxygen consumption rates displayed a strong exponential reaction correlation with particle size for the material. The POR was found to range from 0.28 to 10.90 wt%/year FeS2 for the materials tested. A relationship between particle size and POR was established for comparative purposes. The smaller grind sizes included in this study extend the AMD/POR particle size data set available in the literature and will assist with geochemical engineering for designing tailings storage facilities. The potential economic and mine design ramifications of additional reactivity of fine mine materials is assessed and discussed using a unit cost framework for applying neutralizing materials.

Keywords

Acid mine drainage Surface and groundwater Oxygen consumption Pyrite oxidation rate Mine closure 

Zusammenfassung

Die Oxidationsreaktionsraten in saurem Minenabwasser (AMD) wurden unter Verwendung der Sauerstoffverbrauchsraten in einem Abraumgestein mit hohem Schwefelgehalt aus den australischen Kohleprovinzen im Latrobe-Tal und einem Abraumsubstrat mit mittlerem bis niedrigem Schwefelgehalt aus einer Porphyrkupferlagerstätte in Papua Neuguinea bestimmt. Es wurden neun Korngrößenfraktionen getestet, die von Material, das durch ein 0038 mm-Sieb zurückgehalten wurde, bis zu einem 40 mm-Sieb reichten. Die Sauerstoffverbrauchsraten wurden in versiegelten Zellen gemessen, um die Pyritoxidationsraten (POR) in jeder Probe zu bestimmen. Die Sauerstoffverbrauchsraten zeigten eine starke exponentielle Reaktionskorrelation mit der Partikelgröße des Materials. Es wurde festgestellt, dass die POR für die getesteten Materialien im Bereich von 0,28 bis 10,9 Masse- % FeS2 pro Jahr lag. Zu Vergleichszwecken wurde ein Zusammenhang zwischen Partikelgröße und POR hergestellt. Die in dieser Studie enthaltenen kleineren Korngrößen erweitern den in der Literatur verfügbaren Partikeldatensatz für AMD/POR und unterstützen die geochemische Ingenieurkunst bei der Planung von Speicheranlagen für Tailings. Die möglichen wirtschaftlichen und konstruktiven Auswirkungen der zusätzlichen Reaktivität feiner Abraumsubstrate werden anhand eines Einheitskostenrahmens für die Anwendung neutralisierender Materialien bewertet und diskutiert.

Resumen

Las tasas de reacción de oxidación de AMD se determinaron usando las velocidades de consumo de oxígeno en una roca de alto contenido de azufre de las provincias de carbón de Latrobe Valley de Australia y una roca de desecho de azufre de rango medio a bajo de un depósito de pórfido de cobre en Papua, Nueva Guinea. Se probaron nueve tamaños de grano, desde material retenido por un tamiz de 0,038 mm hasta un tamiz de 40 mm. Se midieron las velocidades de consumo de oxígeno en células selladas para establecer las velocidades de oxidación de pirita (POR) en cada muestra. Las velocidades de consumo de oxígeno mostraron una fuerte correlación exponencial con el tamaño de partícula para el material. Se encontró que el POR oscilaba entre 0,28 y 10,90% en peso/año de FeS2 para los materiales probados. Con fines comparativos Se estableció una relación entre el tamaño de partícula y el POR. Los tamaños de molienda más pequeños incluidos en este estudio amplían el conjunto de datos de tamaño de partículas AMD/POR disponible en la literatura y ayudarán con la ingeniería geoquímica para diseñar instalaciones de almacenamiento de relaves. Las posibles ramificaciones económicas y de diseño minero de la reactividad adicional de los materiales finos se evalúan y discuten utilizando un marco de costo unitario para aplicar materiales neutralizantes.

粒度对矿山废物的硫化物氧化速度和概念性处理成本的影响

利用澳大利亚拉特罗布山谷(Latrobe Valley)聚煤盆地的富硫煤层顶板覆岩和巴布亚新几内亚斑岩铜矿的中、低硫废矿石的耗氧速率确定AMD氧化速度。试验了粒径从0.038 mm到40 mm的9种筛余材料。通过测量密闭实验装置内的耗氧速率来确定每个试验样品的黄铁矿氧化速度(POR)。耗氧速率与材料的粒径呈密切指数相关关系。试验材料的黄铁矿氧化速度(POR)为0.28 ~ 10.90 wt %/yr(重量百分比/年,以FeS2计)。为便于直接对比,建立了颗径与黄铁矿氧化速度(POR)的关系。试验已经涵盖了系列AMD/POR文献涉及的更小粒径范围,因此研究能够为尾矿存储设施设计所需的地球化学试验提供借鉴和参考。以铺设中和材料为目的,利用单位成本框架方法,评价和讨论了细粒材料的附加反应引起的潜在经济与矿山设计方面的问题。.

References

  1. AMIRA (2002) Prediction and kinetic control of acid mine drainage. AMIRA P387A, Australian mineral industries research Assoc, Ian Wark Research Institute and Environmental Geochemistry International Ltd, MelbourneGoogle Scholar
  2. Anderson ME, Scharer JM, Nicholson RV (1999) The oxygen consumption method (OCM): a new technique for quantifying sulfide oxidation rates in waste rock. In: Proceedings: mining and the environment II, Sudbury, CanadaGoogle Scholar
  3. Apello CAJ, Postma D (2007) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publ, LeidenGoogle Scholar
  4. ASTM E1915-13 (2013) Standard test methods for analysis of metal bearing ores and related materials for carbon, sulfur, and acid-base characteristics. American Society for Testing and Materials International, PhiladelphiaGoogle Scholar
  5. Benson CH (2014) Lessons learned from the alternative cover assessment program (ACAP). In: Proceedings of the 7th international congress on environmental geotechnics, MelbourneGoogle Scholar
  6. Blewitt R (ed) (2012) Shaping a nation—the geology of Australia. Geoscience Australia and ANU Press, CanberraGoogle Scholar
  7. Bourgeot N, Piccinin R, Taylor J (2011) The benefits of kinetic testwork using oxygen consumption techniques and implications for the management of sulfidic materials. In: Proc, 7th Australian Workshop on Acid and Metalliferous Drainage, Darwin, AustraliaGoogle Scholar
  8. Brough C, Strongman J, Bowell R, Warrender R, Prestia A, Barnes A, Fletcher J (2017) Automated environmental mineralogy; the use of liberation analysis in humidity cell testwork. Miner Eng 107:112–122CrossRefGoogle Scholar
  9. Chadwick J (2009) Mine optimisation. Int Mining, p 18–28Google Scholar
  10. Corbett G (2009) Anatomy of porphyry-related Au-Cu-Ag-Mo mineralised systems: some exploration implications. Proc Aust Inst Geosci N Qld Explor Conf AIG Bull 49:33–46Google Scholar
  11. Davis B, Bourgeot N, Taylor J (2014) Using kinetic geochemical testwork to assist with mine planning, operations and post closure. In: Miller H, Preuss (Eds), Proc, 8th Australian Workshop on Acid and Metalliferous Drainage, pp 281–294Google Scholar
  12. DITR (2007) Leading practice sustainable development program for the mining industry–managing acid and metalliferous drainage. Dept of Industry, Tourism and Resources, CanberraGoogle Scholar
  13. Elberling B, Nicholson RV (1996) Field determination of sulfide oxidation rates in mine tailings. Water Resour Res 32(6):1773–1784CrossRefGoogle Scholar
  14. Elberling B, Nicholson RV, Reardon EJ, Tibble P (1994) Evaluation of sulfide oxidation rates: a laboratory study comparing fluxes and rates of oxidation product release. Can Geotech J 31:375–383CrossRefGoogle Scholar
  15. Elghali A, Benzaazoua M, Bouzahzah H, Bussière B, Villarraga-Gómez H (2018) Determination of the available acid-generating potential of waste rock, part I: mineralogical approach. Appl Geochem 99:31–41CrossRefGoogle Scholar
  16. Elghali A, Benzaazoua M, Bussière B, Bouzahzah H (2019) Determination of the available acid-generating potential of waste rock, part II: waste management involvement. Appl Geochem 100:316–325CrossRefGoogle Scholar
  17. Erguler ZA, Erguler KG (2015) The effect of particle size on acid mine drainage generation: kinetic column tests. Miner Eng 76:154–167CrossRefGoogle Scholar
  18. Erguler KG, Erguler ZA, Akcakoca H, Ucar A (2014) The effect of column dimensions and particle size on the results of kinetic column test used for acid mine drainage (AMD) prediction. Miner Eng 55:18–29CrossRefGoogle Scholar
  19. Hollings P, Hendry MJ, Nicholson RV, Kirkland RA (2000) Quantification of oxygen consumption and sulfate release rates for waste rock piles using kinetic cells: Cluff Lake uranium mine, northern Saskatchewan, Canada. Appl Geochem 16:1215–1230CrossRefGoogle Scholar
  20. Lapakko KA (2003) Developments in humidity-cell tests and their application. In: Jambor JL, Blowes DW, Ritchie AIM (Eds) Environmental aspect of mine wastes. Mineralogical Assoc of Canada, Short Course Series, vol. 31, pp 147–164Google Scholar
  21. Lapakko KA, Engstrom JN, Antonson DA (2006) Effects of particle size on drainage quality from three lithologies. In: Poster paper presented at the 7th international conference on acid rock drainage (ICARD)Google Scholar
  22. Maest A, Kuipers JR, Travers CL, Atkins DA (2005) Predicting water quality at hardrock mines methods and models, uncertainties, and State-of-the-Art. Earthworks, Washington, D.CGoogle Scholar
  23. Naka A, Flores G, Katsumi T, Inui T, Takai A, Sakanakura H (2014) Impact of acid rock drainage on the hydraulic performance and chemical compatibility of geosynthetic clay liners. In: Proc, 7th International Congress on Environmental Geotechnics, Engineers Australia, Melbourne, pp 504–511Google Scholar
  24. Runge KC, Tabosa E, Jankovic A (2013) Particle size distribution effects that should be considered when performing flotation geometallurgical testing. In: Proceedings of the 2nd AUSIMM geometallurgy conferenceGoogle Scholar
  25. Schmieder P, Bourgeot N, Taylor J (2012) Oxygen consumption techniques to quantify acidity generation rates. In: Proceedings of 1st international acid and metalliferous drainage workshop in ChinaGoogle Scholar
  26. Schroeder LM, Gottfried M (2002) Temperature-programmed desorption (TPD), thermal desorption spectroscopy (TDS). Advanced Physical Chemistry Laboratory, FU BerlinGoogle Scholar
  27. Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York CityGoogle Scholar
  28. Tibble PA, Nicholson RV (1997) Oxygen consumption on sulphide tailings and tailings covers: measured rates and applications. In: Proceedings of the fourth international conference on acid rock drainage, Vancouver, Canada, pp 647–660Google Scholar
  29. US EPA (1994) Acid mine drainage prediction–technical document. US Environmental Protection Agency, Washington (Office of Solid Waste, Special Waste Branch) Google Scholar
  30. Zardari MA (2011) Stability of tailings dams–focus on numerical modelling. Phd Thesis, Dept of Civil, Environmental and Natural Resources Engineering, Div of Mining and Geotechnical Engineering, Luleå University of Technology, SwedenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dept. of Infrastructure EngineeringUniversity of MelbourneMelbourneAustralia
  2. 2.Earth Systems 14 Church Str.HawthornAustralia

Personalised recommendations