Mine Water and the Environment

, Volume 38, Issue 4, pp 847–854 | Cite as

Mercury Contamination in Water and Sediments and the Associated Health Risk: A Case Study of Artisanal Gold-mining

  • Arjumand Riaz
  • Sardar KhanEmail author
  • Said MuhammadEmail author
  • Mohammad Tahir Shah
Technical Article


This study investigated mercury (Hg) contamination in the Gilgit-Baltistan, Pakistan. Water and sediment samples were collected from various sites having artisanal gold-mining along the Indus, Gilgit, and Hunza Rivers. Sediments were classified as wet sediment (WS, collected just after amalgamation), fresh dry sediment (FDS, collected after 1–2 h of amalgamation), and old dried sediment (ODS, collected after 1–2 days of amalgamation). Samples were analyzed for Hg by atomic absorption spectrophotometry with a mercury hydride system. Mercury mean concentrations were 2767 mg/kg in WS, 1917 mg/kg in FDS, and 191 mg/kg in ODS. These results revealed very high levels of Hg contamination in the WS and FDS. The Hg contamination of the spring (drinking water) did not exceed the permissible limits set by the World Health Organization (WHO) and Pakistan’s environmental protection agency (Pak-EPA); however, the stream water surpassed these limits. Therefore, the Hg levels in the drinking water was used to assess the potential human health risk via the average daily dose (ADD) and hazard quotient (HQ). The ADD values were 0.03 and 0.06 µg/kg-day and HQ value of 0.9 and 2.0 for adults and children, respectively. This level of Hg contamination level is alarming and could be hazardous in future.


Average daily dose Drinking water Hazard quotient River water Pakistan 

Quecksilberkontamination in Wasser und Sedimenten und das damit verbundene Gesundheitsrisiko: Eine Fallstudie aus artisanalem Gold-Bergbau


Wir untersuchten Quecksilberkontaminationen in Gilit-Baltistan, Pakistan. Wasser- und Sedimentproben wurde an verschiedenen Orten mit artisanalem Bergbau entlang der Flüsse Indus, Gilit und Hunza entnommen. Die Sedimente wurden als Nasssedimente (NS; beprobt unmittelbar nach der Amalgamierung), frische Trockensedimente (FTS; beprobt 1-2 Stunden nach der Amalgamierung) und alte Trockensediment (ATS; beprobt 1-2 Tage nach der Amalgamierung) klassifiziert. Die Proben wurden mit Atomabsorptionsspektrometrie mit Quecksilberhydrid–System analysiert. Die mittleren Quecksilberkonzentrationen waren 2767 mg/kg in NS, 1917 mg/kg in FTS und 191 mg/kg in ATS. Diese Ergebnisse zeigten sehr hohe Niveaus der Quecksilberkontaminationen in NS und FTS an. Die Quecksilberkontamination der Quelle (Trinkwasser) überschritt nicht die Grenzwerte der Weltgesundheitsorganisation und der Umweltbehörde Pakistans. Allerdings überschritt das Bachwasser diese Grenzwerte. Daher wurden die Quecksilberkonzentrationen im Trinkwasser benutzt, um das potenzielle menschliche Gesundheitsrisiko mittels der mittleren täglichen Dosis und des Gefahrenquotienten zu bewerten. Die mittlere tägliche Dosis lag bei 0,03 und 0,06 µg/kg*d und der Gefahrenquotient bei 0,9 und 2,0 für Erwachsene bzw. Kinder. Dieses Niveau der Quecksilberkontamination ist alarmierend und kann schnell gefährlich werden.

Contaminación del agua y sedimentos con mercurio y el riesgo asociado sobre la salud: un estudio de caso de la minería artesanal de oro


Investigamos la contaminación por mercurio (Hg) en Gilgit-Baltistan, Pakistán. Se recolectaron muestras de agua y sedimentos de varios sitios con extracción de oro artesanal a lo largo de los ríos Indo, Gilgit y Hunza. Los sedimentos se clasificaron como sedimentos húmedos (WS, recolectados justo después de la amalgamación), sedimentos frescos y secos (FDS, recolectados después de 1-2 h de la amalgamación) y sedimentos secos viejos (ODS, recolectados después de 1-2 días de la amalgamación). Las muestras se analizaron en busca de Hg mediante espectrofotometría de absorción atómica con un sistema de hidruro de mercurio. Las concentraciones medias de mercurio fueron 2767 mg/kg en WS, 1917 mg/kg en FDS, y 191 mg/kg en ODS. Estos resultados revelaron niveles muy altos de contaminación por Hg en el WS y el FDS. La contaminación de Hg en el manantial (agua potable) no excedió los límites permisibles establecidos por la Organización Mundial de la Salud y la agencia de protección ambiental de Pakistán; sin embargo, el agua del arroyo superó estos límites. Los niveles de Hg en el agua potable se utilizaron para evaluar el riesgo potencial para la salud humana a través de la dosis diaria promedio (ADD) y el cociente de riesgo (HQ). Los valores de ADD fueron 0,03 y 0,06 µg/kg-día y un valor HQ de 0,9 y 2,0 para adultos y niños, respectivamente. Este nivel de contaminación por Hg es alarmante y podría ser peligroso en el futuro próximo.



研究了巴基斯坦吉尔吉特-伯尔蒂斯坦(Gilgit-Baltistan)地区 汞污染。沿印度河(Indus)、吉尔吉特河(Gilgit)和罕萨河(Huna),从金矿手工开采采场采集水和沉积物样品。沉积物被分为湿沉积物(WS,直接取自混汞法)、新鲜干沉积物(FDS,混汞法后1-2小时取样)和陈旧干沉积物(ODS,混汞法后1-2天取样)。利用原子吸取光谱法的汞化氢系统测汞。湿沉积物的汞平均浓度2767 mg/kg,新鲜干沉积物汞平均浓度1917 mg/kg,陈旧干沉积物汞平均浓度191 mg/kg。湿沉积物和新鲜干沉积物汞浓度较高。泉水(饮用水)汞浓度未超过世界卫生组织和巴基斯坦环保部门的规定限值;但是,支流水汞含量已经超过界限值。因此,通过平均日摄入剂量(ADD)和风险系数(HQ)评价饮用水中汞的潜在人类健康风险。儿童和成年人的汞平均日摄入量(ADD)分别为0.03µg/kg-day和0.06 µg/kg-day,风险系数(HQ)分别为0.9 和2.0。汞污染已经达预警水平,很快会引发污染灾害。



This study was financially supported by Higher Education Commission (HEC) and the joint research project of the United States of America (USA) and Pakistan. We acknowledge the cooperation of the gold miners in the study area.


  1. Alizadeh A, Balali-Mood M, Mahdizadeh A, Riahi-Zanjani B (2017) Mercury and lead levels in common soaps from local markets in Mashhad. Iran. Iran J Toxicol 11(4):1–3Google Scholar
  2. AMAP/UNEP (Arctic Monitoring and Assessment Programme/United Nations Environment Programme) (2013) Technical background report for the global mercury assessment. Available: download/1265 [accessed 3 June 2018]
  3. Basri Sakakibara M, Sera K (2017) Current mercury exposure from artisanal and small-scale gold mining in Bombana, southeast Sulawesi, Indonesia—future significant health risks. Toxics 5(1):7Google Scholar
  4. Begum S, Shah MT, Muhammad S, Khan S (2015) Role of mafic and ultramafic rocks in drinking water quality and its potential health risk assessment, northern Pakistan. J Water Health 3(4):1130–1142Google Scholar
  5. Biber K, Khan SD, Shah MT (2015) The source and fate of sediment and mercury in Hunza River basin, northern Areas, Pakistan. Hydrol Process 29(4):579–587Google Scholar
  6. Bose-O’Reilly S, Lettmeier B, Gothe RM, Beinhoff C, Siebert U, Drasch G (2008) Mercury as a serious health hazard for children in gold mining areas. Environ Res 107:89–97Google Scholar
  7. Bravo AG, Cosion C, Amouroux D, Zopfi J, Chevalley P-A, Spangenberg JE, Ungureanu V-G, Dominik J (2014) Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Res 49:391–405Google Scholar
  8. Burch JB, Robb SW, Puett R, Cai B, Wilkerson R, Karmaus W, Vena J, Svendsen E (2014) Mercury in fish and adverse reproductive outcomes: results from South Carolina. Int J Health Geogr 13(30):1–11Google Scholar
  9. Chappells H, Campbell N, Drage J, Fernandez CV, Parker L, Dummer TJ (2015) Understanding the translation of scientific knowledge about arsenic risk exposure among private well water users in Nova Scotia. Sci Total Environ 505:1259–1273Google Scholar
  10. Chen Y, Graziano JH, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342:d2431. CrossRefGoogle Scholar
  11. Cidu R, Dore E, Biddau R, Nordstrom DK (2017) Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu Mine (Sardinia, Italy). Mine Water Environ 37(1):151–165Google Scholar
  12. Cobbina SJ, Dagben JZ, Obiri S, Tom-Dery D (2011) Assessment of non-cancerous health risk from exposure to Hg, As and Cd by resident children and adults in Nangodi in the upper east region, Ghana. Water Qual Expos Hea 3:225–232Google Scholar
  13. Craw D, Cavanagh J, Druzbicka J, Harding JS, Kerr G, Pope J, Trumm D (2015) A geoenvironmental model for orogenic gold deposits to predict potential environmental effects. Mine Water Environ 34(4):388–403Google Scholar
  14. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212Google Scholar
  15. Galimberti C, Corti I, Cressoni M, Moretti VM, Menotta S, Galli U, Cambiaghi D (2016) Evaluation of mercury, cadmium and lead levels in fish and fishery products imported by air in north Italy from extra-European Union Countries. Food Control 60:329–337Google Scholar
  16. Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 103:1–14Google Scholar
  17. Gibb H, O’Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect 122:667Google Scholar
  18. Gil F, Hernández A (2015) Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem Toxicol 80:287–297Google Scholar
  19. Gul N, Shah M, Khan S, Khattak N, Muhammad S (2015) Arsenic and heavy metals contamination, risk assessment and their source in drinking water of the Mardan district, Khyber Pakhtunkhwa Pakistan. J Water Health 13:1073–1084Google Scholar
  20. IUCN (2003) Northern area state of environment and development. International union for conservation of nature Pakistan Country Office, Karachi-75530, Pakistan. 8–55Google Scholar
  21. Jonsson S, Skyllberg U, Nilsson MB, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624Google Scholar
  22. Kim K-H, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385Google Scholar
  23. Langeland AL, Hardin RD, Neitzel RL (2017) Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int J Env Res Pub He 14(3):302Google Scholar
  24. Leopold K, Foulkes M, Worsfold P (2010) Methods for the determination and speciation of mercury in natural waters—a review. Anal Chim Acta 663:127–138Google Scholar
  25. Liang P, Feng X, Zhang C, Zhang J, Cao Y, You Q, Leung AO, Wong MH, Wu SC (2015) Human exposure to mercury in a compact fluorescent lamp manufacturing area: by food (rice and fish) consumption and occupational exposure. Environ Pollut 198:126–132Google Scholar
  26. Martínez-Salcido A, Ruelas-Inzunza J, Gil-Manrique B, Nateras-Ramírez O, Amezcua F (2018) Mercury levels in fish for human consumption from the southeast Gulf of California: tissue distribution and health risk assessment. Arch Environ Contam Toxicol 74:273–283Google Scholar
  27. Mieiro C, Coelho J, Dolbeth M, Pacheco M, Duarte A, Pardal M, Pereira M (2016) Fish and mercury: influence of fish fillet culinary practices on human risk. Food Control 60:575–581Google Scholar
  28. Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98:334–343Google Scholar
  29. Okpala COR, Sardo G, Vitale S, Bono G, Arukwe A (2017) Hazardous properties and toxicological update of mercury: from fish food to human health safety perspective. Crit Rev Food Sci Nutr 58(12):1986–2001Google Scholar
  30. Olivero-Verbel J, Caballero-Gallardo K, Turizo-Tapia A (2015) Mercury in the gold mining district of San Martin de Loba, south of Bolivar (Colombia). Environ Sci Pollut Res Int 22:5895–5907Google Scholar
  31. Pak-EPA (2008) National Standards for Drinking Water Quality (NSDWQ). Government of Pakistan, Pakistan Environmental Protection Agency (Pak-EPA), Ministry of Environment, PakistanGoogle Scholar
  32. Riaz A, Khan S, Muhammad S, Liu C, Shah MT, Tariq M (2018) Mercury contamination in selected foodstuffs and potential health risk assessment along the artisanal gold mining, Gilgit-Baltistan, Pakistan. Environ Geochem Health 40:625–635Google Scholar
  33. Rodrigues S, Coelho C, Cruz N, Monteiro RJ, Henriques B, Duarte AC, Römkens PF, Pereira E (2014) Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas. Sci Total Environ 496:649–661Google Scholar
  34. Shah MT, Khan H (2004) Exploration and extraction of placer gold in the terraces of Bagrot valley. Gilgit, northern Pakistan. Geol Bull Univ Pesh 37:27–40Google Scholar
  35. Taylor CM, Golding J, Emond AM (2016) Blood mercury levels and fish consumption in pregnancy: risks and benefits for birth outcomes in a prospective observational birth cohort. Int J Hyg Environ Health 219:513–520Google Scholar
  36. Tomicic C, Vernez D, Belem T, Berode M (2011) Human mercury exposure associated with small-scale gold mining in Burkina Faso. Int Arch Occup Environ Health 84:539–546Google Scholar
  37. Tong Y, Zhang W, Hu D, Ou L, Hu X, Yang T, Wei W, Ju L, Wang X (2013) Behavior of mercury in an urban river and its accumulation in aquatic plants. Environ Earth Sci 68:1089–1097Google Scholar
  38. Turaga RMR, Howarth RB, Borsuk ME (2014) Perceptions of mercury risk and its management. Hum Ecol Risk Assess 20:1385–1405Google Scholar
  39. Ullah Z, Naz A, Saddique U, Khan A, Shah W, Muhammad S (2017) Potentially toxic elements concentrations and human health risk assessment of food crops in Bajaur Agency, Pakistan. Environ Earth Sci 76:482Google Scholar
  40. UNEP (2013) (United Nations Environment Programme). Mercury—Time to Act. Available: [accessed 3 June 2018]
  41. United States Environmental Protection Agency (USEPA) (1995) Mercury, elemental. Integrated Risk Information System (IRIS), (CASRN 7439-97-6)Google Scholar
  42. USEPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. Environmental Protection Agency, Office of Emergency and Remedial Response, WashingtonGoogle Scholar
  43. Van Straaten P (2000) Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. Sci Total Environ 259:105–113Google Scholar
  44. Veiga MM, Baker RF, Fried MB, Withers D (2004) Protocols for environmental and health assessment of mercury released by artisanal and small-scale gold miners. United Nations PublicationsGoogle Scholar
  45. Veiga MM, Maxson PA, Hylander LD (2006) Origin and consumption of mercury in small-scale gold mining. J Clean Prod 14:436–447Google Scholar
  46. Wang Q, Liu R, Men C, Xu F, Guo L, Shen Z (2017) Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary. Mar Pollut Bull 124(1):488–495Google Scholar
  47. WHO (2007) (World Health Organization). Exposure to Mercury: A Major Public Health Concern. Geneva: WHO Available: [accessed 15 December 2017]
  48. WHO (2008) (World Health Organization). Mercury: Assessing the Burden of Disease at National and Local Levels. Environmental Burden of Disease Series, No. 16. Geneva:WHO. Available: [accessed 15 December 2017]
  49. Zain OF (2010) A socio-political study of Gilgit Baltistan Province. Pak J Soc Sci (PJSS) 30Google Scholar
  50. Zhong T, Xue D, Zhao L, Zhang X (2018) Concentration of heavy metals in vegetables and potential health risk assessment in China. Environ Geochem Health 40(1):313–322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of PeshawarPeshawarPakistan
  2. 2.Department of Earth SciencesCOMSATS UniversityAbbottabadPakistan
  3. 3.National Center of Excellence in GeologyUniversity of PeshawarPeshawarPakistan
  4. 4.FATA UniversityKohatPakistan

Personalised recommendations