Advertisement

Groundwater Recharge Assessment in an Arid, Coastal, Middle Mountain Copper Mining District, Coquimbo Region, North-central Chile

  • Jorge Oyarzún
  • Jorge Núñez
  • Jerry P. Fairley
  • Sebastián Tapia
  • Diana Alvarez
  • Hugo Maturana
  • José Luis Arumí
  • Evelyn Aguirre
  • Alfonso Carvajal
  • Ricardo OyarzúnEmail author
Technical Article
  • 37 Downloads

Abstract

Groundwater recharge processes operating in a portion of the western slope of the Chilean Coastal Cordillera (30°S) were assessed. The study takes advantage of the presence of the Cerro Brillador Mine (CBM), currently part of the Universidad de La Serena mining research center. Six factors—slope, solar exposure, drainage density, lineament density, geology and vegetation were characterized in a 12 km × 12 km area around the mine to identify the zones of greatest and least potential for groundwater recharge. The analysis indicates that approximately 66% of the total area presents favorable conditions for recharge. At a more local scale, the work focused on the CBM itself, an experimental facility where structural measurements in the interior and exterior of the mine, monitoring of the water level in the shaft, and sampling of mine water for chemical and isotopic composition were carried out. The chemical analysis highlighted the lack of acid drainage, despite the existence of pyrite (FeS2) and copper-sulfate mineralization in the mine. The isotopic analysis showed that the groundwater has a similar signature to local precipitation. From this information, a simple conceptual model for the hydrogeology is proposed, in which precipitation rapidly recharges the mine along faults and joints with a preferential N-S strike, but is impounded by the Urrutia fault, which facilitates the storage of groundwater in the underground workings by acting as a flow barrier. A simple analysis suggests a recharge rate on the order of 5% of the average annual precipitation for the CBM area.

Keywords

Groundwater infiltration Hydrogeology Mountain-block recharge Cerro Brillador Mine GIS 

Einschätzung der Grundwasser-Neubildung in einer ariden, küstennahen Mittelgebirgsregion mit Kupferbergbau, Region Coquimbo, nördliches Zentral-Chile

Zusammenfassung

In einem Teil des Westhangs der chilenischen Küstenkordillere (30° Süd) wurden die Vorgänge der Grundwasser-Neubildung untersucht. Die Studie nutzt die Anwesenheit der Cerro-Brillador-Mine (CBM), die derzeit Teil des Bergbauforschungszentrums der Universität von La Serena ist. Sechs Faktoren − Hangneigung, Sonneneinstrahlung, Entwässerungsdichte, Geofrakturdichte, Geologie und Vegetation wurden in einem Gebiet von 12 km × 12 km um die Mine herum charakterisiert, um die Zonen mit dem größten und geringsten Potenzial für Grundwasser-Neubildung zu identifizieren. Die Analyse zeigt, dass etwa 66 % der Gesamtfläche günstige Bedingungen für Grundwasser-Neubildung aufweisen. Auf lokaler Ebene konzentrierte sich die Arbeit auf die CBM selbst, eine Versuchsanlage, in der Strukturmessungen im Inneren und Äußeren der Mine, Überwachung des Wasserstandes im Schacht und Probenahme von Grubenwasser zur Analyse der chemischen und Isotopen-Zusammensetzung durchgeführt wurden. Die chemische Analyse verdeutlichte das Fehlen eines sauren Drains trotz der Existenz von Pyrit (FeS2) und Kupfersulfat-Mineralisierung in der Mine. Die Isotopenanalyse zeigte, dass das Grundwasser eine ähnliche Signatur hatte wie lokales Niederschlagswasser. Aus dieser Information wird ein einfaches konzeptionelles Modell für die regionale Hydrogeologie vorgeschlagen. Demnach wird die Mine entlang von Bruchlinien und Klüften mit bevorzugter N-S Streichrichtung schnell mit Niederschlagswasser gespeist. Dieses wird aber durch die Urrutia-Verwerfung aufgestaut, die die Speicherung von Grundwasser im Grubengebäude fördert und als Strömungsbarriere wirkt. Eine einfache Analyse legt eine Grundwasser-Neubildungsrate in der Größenordnung von 5 % des durchschnittlichen Jahresniederschlags für den CBM-Bereich nahe.

Evaluación de la recarga de aguas subterráneas en un distrito de minas de cobre, árido, costero y de montaña media de la región de Coquimbo, centro-norte de Chile

Resumen

Se evaluaron los procesos de recarga de agua subterránea que operan en una porción de la vertiente occidental de la Cordillera Costera Chilena (30 ° S). El estudio aprovecha la presencia de la mina Cerro Brillador (CBM), que actualmente forma parte del centro de investigación minera de la Universidad de La Serena. Se caracterizaron seis factores: pendiente, exposición solar, densidad de drenaje, densidad de lineamientos, geología y vegetación en un área de 12 km × 12 km alrededor de la mina para identificar las zonas de mayor y menor potencial de recarga de agua subterránea. El análisis indica que aproximadamente el 66% del área total presenta condiciones favorables para la recarga. A una escala más local, el trabajo se centró en el CBM mismo, una instalación experimental donde se realizaron mediciones estructurales en el interior y el exterior de la mina, el monitoreo del nivel del agua en el pozo y el muestreo de agua de la mina para determinar la composición química e isotópica. afuera. El análisis químico destacó la falta de drenaje ácido, a pesar de la existencia de pirita (FeS2) y la mineralización de sulfato de cobre en la mina. El análisis isotópico mostró que el agua subterránea tiene un patrón similar a la precipitación local. A partir de esta información, se propone un modelo conceptual simple para la hidrogeología, en el cual la precipitación recarga rápidamente la mina a lo largo de fallas y juntas con un ataque NS preferencial, pero está encerrada por la falla Urrutia, que facilita el almacenamiento de agua subterránea en los trabajos subterráneos actuando como una barrera de flujo. Un análisis simple sugiere una tasa de recarga del orden del 5% de la precipitación anual promedio para el área de CBM.

位于干旱的智利中北部科金博(Coquimbo)沿海中高山地的铜矿区地下水补给评价

抽象

研究了智利沿海岸山脉(30°S)西坡的地下水补给过程。老矿井Cerro Brillador Mine (CBM)被进一步开发为Universidad de La Serena大学的采矿研究中心。围绕CBM矿井12km×12km范围,从坡度、光照强度、河网密度、线性构造密度、地质条件和植被特征六个方面刻画研究区,识别研究区内最大和最小潜在地下水补给。分析表明,66%的范围都宜划作补给区。在更小的局部尺度内,研究集中于CBM矿本身;整个CBM矿被视作地下水试验系统,测量矿井内外尺寸,监测矿井竖井水位,集取水样化验水质和同位素。水质化学测试结果表明,虽然矿井存在黄铁矿(FeS2)和硫酸铜矿化作用,但是矿井水并不显酸性。同位素分析结果显示地下水具有与当地降水类似的特征。由此,提出概念模型:降水沿N-S向断层和节理快速补给矿井,被Urrutia断层阻隔,使井下工作面储存水量增加。简单分析表明,CBM地区地下水补给量为当量平均降水量的5%。

Notes

Acknowledgements

This work was developed within the framework of the Conicyt/Programa Fondecyt Project 1150587 and the Water Resources and Environment Program (PRHIMA, for its acronym in Spanish) of the Department of Mining Engineering of the Universidad de La Serena, and Conicyt/Fondap/15130015 Center CRHIAM. The paper benefited from the comments of two anonymous reviewers, and the editorial suggestions of Dr. A. Maest.

References

  1. Adinolfi R, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (δ18O‰, δ2H‰, δ13C‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory—central Italy). J Hydrol 357:368–388CrossRefGoogle Scholar
  2. Araya A, Salfate H (2014) Recopilation of geologic, historic, and topographic information and modeling of the Brillador mine through Sketchup and Surpac Graduation work, Ingeniería de Ejecución en Minas, Universidad de La Serena (in Spanish) Google Scholar
  3. Assirati L, Silva NR, Berton L, Lopes AA, Bruno OM (2014) Performing edge detection by Difference of Gaussians using q-Gaussian kernels. J Phys Conf Ser.  https://doi.org/10.1088/1742-6596/490/1/012020 Google Scholar
  4. Babiker M, Gudmundsson A (2004) The effects of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297:256–273CrossRefGoogle Scholar
  5. Bachmair S, Weiler M (2012) Hillslope characteristics as controls of subsurface flow variability. Hydrol Earth Syst Sci 16:3699–3715CrossRefGoogle Scholar
  6. Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res Sol Earth 108(B8):2390CrossRefGoogle Scholar
  7. Buchtele J, Curda S, Hrkal Z, Krasny J (2003) New approach to using GIS in groundwater runoff assessment: the Krusne Mts. In: Krasny J, Hrkal Z, Bruthans J (eds) Proceedings, International Conference on Groundwater in Fractured Rocks Prague Czech Republic, Prague. IHP-VI, Series in Groundwater 7. International Association of Hydrogeologists, pp 135–136Google Scholar
  8. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028CrossRefGoogle Scholar
  9. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903CrossRefGoogle Scholar
  10. Chavez PS (1996) Image-based atmospheric corrections-revisited and improved. Photogramm Eng Rem S 69(9):1025–1036Google Scholar
  11. CIREN (2004) Determination of homogeneous zones of groundwater availability between the Elqui, Limarí and Choapa rivers. http://bibliotecadigital.ciren.cl/handle/123456789/1193. Accessed 13 April 2016 (in Spanish)
  12. Cizdziel JV, Wei Y, Stetzenbach KJ, Hodge VF, Cline J, Howley R, Phillips FM (2008) Recent measurements of 36Cl in Yucca Mountain rock, soil and seepage. J Radioanal Nucl Chem 275:133–144CrossRefGoogle Scholar
  13. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007CrossRefGoogle Scholar
  14. Cooper HH, Bredehoeft JD, Papadopulos IS, Bennett RR (1965) The response of well-aquifer systems to seismic waves. J Geophys Res 70(16):3915–3926CrossRefGoogle Scholar
  15. Dar IA, Sankar K, Dar M (2010) Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in hardrock terrain, Mamundiyar basin. J Hydrol 394:285–295CrossRefGoogle Scholar
  16. Dubo A (1984) Geologic information and perspectives for the Brillador mine (29°48′S/71°11′W). Graduation work, Ingeniería de Ejecución en Minas, Universidad de La Serena, La Serena, Chile, pp 41 (in Spanish) Google Scholar
  17. Emparán C, Pineda F (2000) Geologic Map No 18, La Serena-La Higuera Area, 1:100.000. Servicio Nacional de Geología y Minería, Santiago, ChileGoogle Scholar
  18. Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19(11):1393–1404CrossRefGoogle Scholar
  19. Hengl T, Heuvelink GB, Van Loon EE (2010) On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrol Earth Syst Sci 7(1):767–799CrossRefGoogle Scholar
  20. Iwatsuki T, Furue R, Mie H, Ioka S, Mizuno T (2005) Hydrochemical baseline condition of groundwater at the Mizunami underground research laboratory (MIU). Appl Geochem 20:2283–2302CrossRefGoogle Scholar
  21. King CY, Azuma S, Igarashi G, Ohno M, Saito H, Wakita H (1999) Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. J Geophys Res 104(B6):13073–13082CrossRefGoogle Scholar
  22. Kuntz J (1925) Mining Monography of the Coquimbo Province. Booklet 13. Cuerpo de Ingenieros de Minas, SantiagoGoogle Scholar
  23. Lee S, Wolberg G, Shin SY (1997) Scattered data interpolation with multilevel B-splines. IEEE T Vis Comput Gr 3(3):228–244CrossRefGoogle Scholar
  24. Llaumett C (1970) Santa Rosita and 26 de Agosto geologic map, Brillador District, Coquimbo, Chile. In: UNDP-Empresa Nacional de Minería, 1971, Report of the Chile 28 ProjectGoogle Scholar
  25. Maksaev V, Townley B, Palacios C, Camus F (2007) Metallic ore deposits. In: Moreno T, Gibbons W (eds) The geology of Chile, Chap 6. The Geological Society of London, pp 179–200Google Scholar
  26. Matsushita B, Yang W, Chen J, Onda Y, Qiu G (2007) Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7(11):2636–2651CrossRefGoogle Scholar
  27. Minnaert M (1941) The reciprocity principle in lunar photometry. Astrophys J 93:403–410CrossRefGoogle Scholar
  28. Montecinos E (1982) Effect of exposure on the development of Aridosls in the IV Region. Graduation work, Ingeniería Agronómica, Universidad de Chile, Santiago, Chile, pp 79 (in Spanish) Google Scholar
  29. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28(3):323–344CrossRefGoogle Scholar
  30. Oyarzun R, Oyarzún J, Lillo J, Maturana H, Higueras P (2007) Mineral deposits and Cu–Zn–As dispersion–contamination in stream sediments from the semiarid Coquimbo Region, Chile. Environ Earth Sci 53:283–294Google Scholar
  31. Paskoff R (1993) Semi-arid Chile geomorphology. Departamento de Publicaciones, Universidad de La Serena. La Serena, ChileGoogle Scholar
  32. Petro AB, Sbert C, Morel J (2014) Multiscale retinex. Image Process Line 4:71–88.  https://doi.org/10.5201/ipol.2014.107 CrossRefGoogle Scholar
  33. Prassad RK, Mondal NC, Banerjee P (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Earth Sci 55:467–475Google Scholar
  34. Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater. American Public Health Assoc, Washington, DCGoogle Scholar
  35. Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Proc, 3rd Earth Resources Technology Satellite-1 Symp, Greenbelt, USA; NASA SP-351, pp 3010–3017, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf. Accessed 12 Sept 2017
  36. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370CrossRefGoogle Scholar
  37. Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeol J 14:433–443CrossRefGoogle Scholar
  38. Shelp ML, Zhan G, Upton B (2011) The applications of satellite based remote sensing techniques in the hydrological assessment of mine water supply and management systems. Mine Water Environ 30:242–251CrossRefGoogle Scholar
  39. Singh P, Krishana J, Kumar S (2013) Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrolog Sci J 58(1):213–223CrossRefGoogle Scholar
  40. Smith JA, Tzeu LL, Ranson KJ (1980) The Lambertian assumption and landsat data. Photogramm Eng Rem Sensing 46(9):1183–1189Google Scholar
  41. Smith SE, El-Shamy I, Abd-El Monsef H (1997) Locating regions of high probability for groundwater in the Wadi El-Arish Basin, Sinai, Egypt. J Afr Earth Sci 25(2):253–262CrossRefGoogle Scholar
  42. Squeo FA, Aravena R, Aguirre E, Pollastri A, Jorquera CB, Ehleringer JR (2006) Groundwater dynamics in a coastal aquifer in north-central Chile: implications for groundwater recharge in an arid ecosystem. J Arid Environ 67:240–254CrossRefGoogle Scholar
  43. Tweed SO, Leblanc M, Webb JA, Lubczynski MW (2007) Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol J 15:75–96CrossRefGoogle Scholar
  44. Zambra J (2015) Geotechnical characterization of the 580 level, Brillador mine. Unpublished internal technical report, Mines Engineering Department, Universidad de La Serena, pp 34 (in Spanish) Google Scholar
  45. Zhao G, Gao J, Tian P, Tian K (2009) Comparison of two different methods for determining flow direction in catchment hydrological modeling. Water Sci Eng 2(4):1–15Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jorge Oyarzún
    • 1
  • Jorge Núñez
    • 1
    • 2
  • Jerry P. Fairley
    • 3
  • Sebastián Tapia
    • 4
  • Diana Alvarez
    • 5
  • Hugo Maturana
    • 1
    • 10
  • José Luis Arumí
    • 6
    • 7
  • Evelyn Aguirre
    • 8
  • Alfonso Carvajal
    • 1
  • Ricardo Oyarzún
    • 1
    • 7
    • 9
    Email author
  1. 1.Departamento Ingeniería de MinasUniversidad de La SerenaLa SerenaChile
  2. 2.Centro del Agua para Zonas Aridas y Semiáridas de América Latina y el CaribeLa SerenaChile
  3. 3.Department of Geological SciencesUniversity of IdahoMoscowUSA
  4. 4.Ingeniería Civil AmbientalUniversidad de La SerenaLa SerenaChile
  5. 5.Ingeniería de Ejecución en MinasUniversidad de La SerenaLa SerenaChile
  6. 6.Departamento de Recursos HídricosUniversidad de ConcepciónConcepciónChile
  7. 7.Centro de Recursos Hídricos para la Agricultura y Minería (CRHIAM)ConcepciónChile
  8. 8.Comisión Chilena de Energía Nuclear (CCHEN)Las CondesChile
  9. 9.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  10. 10.Escuela de Prevención de Riesgos y Medio AmbienteUniversidad Católica del NorteCoquimboChile

Personalised recommendations