Advertisement

Distribution of Zinc, Copper, and Iron in the Tailings Dam of an Abandoned Mine in Shimokawa, Hokkaido, Japan

  • Kimleang KhoeurnEmail author
  • Asuka Sasaki
  • Shingo Tomiyama
  • Toshifumi Igarashi
Technical Article
  • 56 Downloads

Abstract

This paper addresses the mechanism of acid mine drainage generation in tailings from an abandoned mine site and predicts the evolution of zinc (Zn), copper (Cu), and iron (Fe) concentrations. Batch leaching experiments and sequential extractions were conducted to investigate the leaching behavior of these contaminants from the tailings and to understand their solid-phase partitioning. Acid-base accounting and principal component analysis (PCA) were used to confirm factors affecting Zn, Cu, and Fe leaching and acid formation based on the leaching experiments. There were strong positive correlations between Zn, Fe, or EC and SO42−, indicating that pyrite and sphalerite are the major minerals releasing Zn and Fe. This aligns with the PCA results. In the upper part of the tailings, the water-soluble and sulfide fractions of Zn, Cu, and Fe were almost flushed out, whereas they remained high in the deeper tailings. This implies that the tailings will likely continue to release these contaminants (Zn > Cu > Fe) for a long time unless remedial measures are taken.

Keywords

Acid mine drainage (AMD) Tailings Toxic elements Principal component analysis (PCA) 

Verteilung von Zink, Kupfer und Eisen im Tailings-Becken eines stillgelegten Bergwerks in Shimokawa, Hokkaido, Japan

Zusammenfassung

Dieser Artikel behandelt die Mechanismen der Bildung von saurem Grubenwasser in Tailings stillgelegter Bergwerke und prognostiziert die Entwicklung der Konzentrationen von Zink (Zn), Kupfer (Cu) und Eisen (Fe). Auswaschungsversuche (Bach-Ansatz) und sequentielle Extraktionen wurden durchgeführt, um das Auswaschungsverhalten dieser Metalle aus den Tailings und deren Festphasenverteilung zu verstehen. Basierend auf den Auswaschungstests wurden Säure-Base-Bilanzen und die Hauptkomponentenanalyse benutzt, um die Faktoren zu bestätigen, die die Auswaschung von Zn, Cu und Fe sowie die Säurebildung beeinflussen. Es zeigten sich starke positive Korrelationen Zn, Fe oder elektrischer Leitfähigkeit mit Sulfat. Das wies auf Pyrit und Sphalerit als wichtigste Minerale hin, die Zn und Fe freisetzen und passt zu den Ergebnissen der Hauptkomponentenanalyse. Im oberen Teil der Tailings waren die wasserlöslichen und die Sulfidfraktionen von Zn, Cu und Fe fast ausgewaschen während deren Konzentrationen in den tieferen Bereichen hoch blieben. Das weist darauf hin, dass die Tailings noch für lange Zeit die Kontaminanten (Zn>Cu>Fe) abgeben werden, solange keine Sanierungsmaßnahmen erfolgen.

Distribución de cinc, hierro y cobre en el dique de relaves de una mina abandonada en Shimokawa, Hokkaido, Japan

Resumen

Este trabajo informa el mecanismo de la generación de drenaje ácido de minas en las colas de una mina abandonada y predice la evolución de las concentraciones de cinc (Zn), de cobre (Cu) y de hierro (Fe). Los experimentos batch de lixiviación y las extracciones secuenciales se realizaron para estudiar el comportamiento de estos contaminantes frente a la lixiviación de los relaves y para interpretar la partición en la fase sólida. El balance ácido-base y el análisis de componentes principales (PCA) se usaron para confirmar los factores que afectan la lixiviación de Zn, Cu y Fe y la formación de ácido basada en los experimentos de lixiviación. Hubo fuertes correlaciones positivas entre Zn, Fe o EC y SO 4 2- , lo que indica que la pirita y la esfalerita son los minerales principales que liberan Zn y Fe. Esto se alinea con los resultados de PCA. En la parte superior de las colas, las fracciones solubles en agua y sulfuradas de Zn, Cu y Fe se lavaron en gran cantidad, mientras que se mantuvieron a mayor profundidad en los relaves. Esto significa que los relaves continuarán liberando estos contaminantes (Zn > Cu > Fe) por un largo tiempo salvo que se tomen medidas correctivas.

日本北海道下川废弃矿井尾矿的锌、铜和铁分布

抽象

研究不废弃矿井尾矿产酸机理和预测了锌、铜和铁浓度分布。利用批次淋滤和顺序提取试验研究尾矿污染物的淋滤行为和固相分配特征。在淋滤试验基础上,通过酸-碱平衡和主成分分析(PCA)确定影响锌、铜和铁淋滤及产酸的影响因子。锌、铁、EC和SO 4 2- 具有很强正相关性,说明黄铁矿和闪锌矿是主要锌和铁释放矿物,主成分分析结果也证明了这一点。在尾声矿上部,锌、铜和铁硫化物的可溶部分被冲出,但是尾矿深部仍保持较高浓度。除非采用防治措施,尾矿仍将继续长期释放污染物(锌>铜>铁)。

Notes

Acknowledgements

The authors gratefully appreciate EcoManagement Corporation for their assistance during the field sampling and for providing us with the study site’s geological data. The authors thank the anonymous reviewers for their valuable input and the journal’s editors for their helpful comments and review of the English.

Supplementary material

10230_2018_566_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 59 KB)

References

  1. Acosta JA, Jansen B, Kalbitz K, Faz A, Martinez-Martinez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324CrossRefGoogle Scholar
  2. Adnani ME, Plante B, Benzaazoua M, Hakkou R, Bouzahzah H (2016) Tailing weathering and arsenic mobility at the abandoned Zgounder Silver Mine, Morocco. Mine Water Environ 35:508–524CrossRefGoogle Scholar
  3. Bogush AA, Lazareva EV (2011) Behavior of heavy metals in sulfide mine tailings and bottom sediment (Salair, Kemeovo region, Russia). Environ Earth Sci 64:1293–1302CrossRefGoogle Scholar
  4. Bouzahzah H, Benzaazoua M, Bussiere B, Plante B (2014) Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water Environ 33:54–65CrossRefGoogle Scholar
  5. Carlson L, Schwertmann U (1981) Natural ferrihydrites in surface deposit from Finland and their association with silica. Geochim Cosmochim Acta 45:421–429CrossRefGoogle Scholar
  6. Devasahayam S (2007) Application of particle size distribution analysis in evaluating the weathering in coal mine rejects and tailings. Fuel Process Technol 88:295–301CrossRefGoogle Scholar
  7. Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68CrossRefGoogle Scholar
  8. Dold B, Fontbote L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55CrossRefGoogle Scholar
  9. Duanmu HS, Kang XJ, Li WS (2011) A study of heavy metal geochemistry behavior during oxidation in the mine tailings. Acta Miner Sin 31:153–159Google Scholar
  10. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118Google Scholar
  11. Fadiran AO, Tiruneh AT, Mtshali JS (2014) Assessment of mobility and bioavailability of heavy metals in sewage sludge from Swaziland through speciation analysis. Am J Environ Protect 3:198–208CrossRefGoogle Scholar
  12. Gazea B, Adam K, Kontopoulos A (1995) A review of passive system for the treatment of acid mine drainage. Miner Eng 9(1):23–42CrossRefGoogle Scholar
  13. Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30(1):62–71CrossRefGoogle Scholar
  14. Greenhill PG (2000) AMIRA international: AMD research through industry collaboration. In: Proceedings of 5th international conference on acid rock drainage (ICARD), vol 1, pp 13–19Google Scholar
  15. Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. environmental characterization. Mine Water Environ 27:145–159CrossRefGoogle Scholar
  16. Hall GEM, Vaive JE, Beer R, Hoashi M (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. J Geochem Explor 56:59–78CrossRefGoogle Scholar
  17. Herbert RB Jr (1997) Properties of goethite and jarosite precipitated from acid groundwater. Dalarna Sweden Clays Clay Miner 45(2):261–273CrossRefGoogle Scholar
  18. Ishio H, Kubota Y (1969) On the geology and ore deposits of the Shimokwa Mine, especially of the Nakanosawa area. J Soc Min Geol Jpn 19:160–169 (in Japanese) Google Scholar
  19. Ito F, Nomura T, Katahira K, Kitagawa M, Moriwaki H (2010) Influence of pollution from abandoned sulfur mines on riverine environment: water quality and microbial habitats in Dodo river system. Seikatsu Eisei 54:321–329 (In Japanese with English abstract) Google Scholar
  20. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risk of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692CrossRefGoogle Scholar
  21. Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2011) Hydrochemistry mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. Appl Geochem 26:714–730CrossRefGoogle Scholar
  22. Lawrence KA, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. In: Proceedings of 4th ICARD, Vancouver, pp 451–464Google Scholar
  23. Lee JS, Chon HT, Kim KW (2005) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191CrossRefGoogle Scholar
  24. Lengke MF, Davis A, Bucknam C (2010) Improving management of potentially acid generating waste rock. Mine Water Environ 29:29–44CrossRefGoogle Scholar
  25. Li J, Jia C, Lu Y, Tang S, Shim H (2015) Multivariate analysis of heavy metal leaching from urban soils following simulated acid rain. Microchem J 122:89–95CrossRefGoogle Scholar
  26. Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764CrossRefGoogle Scholar
  27. McGregor RG, Blowes DW (2002) The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. J Geochem Explor 76:195–207CrossRefGoogle Scholar
  28. Miyake T (1965) On genesis of Japanese ‘Kieslager’ deposits with special reference to that of the Shimokawa Mine. J Balneol Soc Jpn 15:1–11 (in Japanese) Google Scholar
  29. Modabberi S, Alizadgegan A, Mirnejad H, Esmaeilzadeh E (2013) Prediction of AMD generation potential in mining waste piles in the Sarcheshmeh porphyry copper deposit, Iran. Environ Monit Assess 185:9077–9087CrossRefGoogle Scholar
  30. Morin AK, Hutt NM (1998) Kinetic tests and risk assessment for ARD. In: Proceedings of 5th Annual BC metal leaching and ARD workshop, Vancouver, available at: http://www.mdag.com/
  31. Park JH, Edraki M, Baumgartl T (2017) A practical testing approach to predict the geochemical hazards of in-pit coal mine tailings and rejects. Catena 148:3–10CrossRefGoogle Scholar
  32. Potgieter-Vermaak SS, Potgieter JH, Monama P, Grieken RV (2006) Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Miner Eng 19:454–446CrossRefGoogle Scholar
  33. Sasaki K, Haga T, Hirajima T, Kurosawa K, Tsunekawa M (2002) Distribution and transition of heavy metals in mine tailings dumps. Mater Trans 43:2778–2783CrossRefGoogle Scholar
  34. Sato S (1967) Shimokawa mine. J Min Metal I Jpn 83:1723–1728Google Scholar
  35. Schafer WM (2000) Use of the net acid generation pH test for assessing risk of acid generation. In: Proceedings of 5th ICARD, vol 1, pp 613–618Google Scholar
  36. Skousen J, Simmons J, McDonald LM, Ziemkiewicz P (2002) Acid–base accounting to predict post-mining drainage quality on surface mines. J Environ Qual 31:2034–2044CrossRefGoogle Scholar
  37. Sugawara M, Yamahara I, Okamura S, Nishido H (1995) Miocene volcanism and primitive basalt from Shimokawa district, north Hokkaido, Japan: constraints on Miocene tectonics from petrogenesis of primary magma. Mem Geol Soc Jpn 44:23–37 (in Japanese) Google Scholar
  38. Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim Cosmochim Acta 67:881–893CrossRefGoogle Scholar
  39. Ueda H, Masuda N (2005) An analysis on mine drainage treatment cost and the technical development to prevent mine pollution. Shigen-to-Sozai 121:323–329 (In Japanese, with English abstract) CrossRefGoogle Scholar
  40. Wang L, Li Y, Wang H, Cui X, Wang X, Lu A, Wang X, Wang C, Gan D (2017) Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sulfide deposit, Western China. J Geochem Explor 173:1–12CrossRefGoogle Scholar
  41. Yadav SK (2010) Heavy metal toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  42. Younger PL, Banwart SA, Hedin RS (2002) Mine Water Hydrology, Pollution, Remediation. Kluwer Academic Publ, LondonGoogle Scholar
  43. Zhang W, Alakangas L, Wei Z, Long J (2016) Geochemical evaluation of heavy metal migration in Pb-Zn tailings covered by different topsoils. J Geochem Explor 165:134–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Sustainable Resources Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Division of Sustainable Resources Engineering, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations