Advertisement

Mine Water and the Environment

, Volume 37, Issue 4, pp 686–695 | Cite as

Changes in Efficiency and Hydraulic Parameters During the Passive Treatment of Ferriferous Acid Mine Drainage in Biochemical Reactors

  • Thomas Genty
  • Bruno Bussière
  • Mostafa Benzaazoua
  • Carmen M. Neculita
  • Gérald J. Zagury
Technical Article

Abstract

The objective of this study was to evaluate the effects of different reactive mixtures and hydraulic retention times (HRTs) on hydraulic parameters (hydraulic conductivity, ksat, and porosity) and the efficiency of passive biochemical reactors (PBRs) for treatment of ferriferous acid mine drainage (AMD). Five 10.7 L PBRs were filled with three reactive mixtures, containing either a carbon-rich substrate (60% w/w) or an inert/neutralizing agent (50% w/w). The PBRs were tested over a 450 day period using two qualities of iron-rich AMD (4 and 1 g L−1 Fe in AMD1 and AMD2, respectively), and two HRTs, of 5 and 7 days. During the last week of the columns’ operation, a tracer test (5 g L−1 of NaCl) was also performed, in addition to monthly measurements using the falling head method. Changes in HRT and ksat were evaluated throughout the experiment. The PBRs increased the pH of AMD influents from 3.5 to 6 and efficiently removed Al, Cd, Cr, Ni, Pb, and Zn (> 90%), whereas Fe was only partially and inconsistently treated. No significant differences were observed among the three tested mixtures, regardless of the HRT or the AMD quality. Results from the tracer test and ksat measurements showed no significant decrease in the initial values of the hydraulic parameters with time except for column 3, where a slight decrease was observed. Although sorption could have been important during the start-up of the PBRs, post-testing characterization of the spent reactive mixtures showed that the Fe was mainly retained as oxy-hydroxides and sulfides. Given the PBRs’ marginal effectiveness for Fe-rich AMD, pre-treatment removal of the iron is recommended.

Keywords

Reactive mixture Retention time Hydraulic conductivity Metal removal mechanisms Tracer test 

生物化学反应器被动处理含铁酸性废水的效率及水力学参数

抽象

文章旨在评价不同反应混合物和水力滞留时间(HRTs)对富铁酸性废水被动生物反应器(PBRs)水力参数(导水性、ksat和孔隙性)和处理效率的影响。5个10.7L生物反应器充填三种反应混合物,包括含炭底层(60% w/w)或惰性/中和试剂(50% w/w)。用两种富铁酸性废水(AMD1和AMD2铁含量分别为4g/L和1g/L)、五天与七天两种水力滞留时间(HRTs)进行450天被动生物反应器处理(PBRs)试验。除每月水头降落测量外,最后一星期还进行了柱示踪试验(5g/L氯化钠)。评价了整个试验过程的水力滞留时间和ksat。被动生物反应器(PBRs)将出流液pH值由3.5提高到6,有效去除了铝、隔、铬、镍、铅和锌(大于90%),但铁仅有少量去除。无论水力滞留时间(HRT)和酸性水质怎样变化,三种不同反应混合物试验结果并无明显差异。示踪和ksat测量表明,初始水力参数并未随时间明显降低,仅3号柱水力参数轻微减小。虽然被动生物反应器开始启动工作时,吸附本应能够起重要作用,但是试验后反应物废物分析表明,铁仍主要保留于氢氧化物和硫化物。考虑被动生物反应器(PBR)的对含铁酸性废水的边际效果,建议水处理前去除酸性废水中铁。

Änderungen der Effektivität und der hydraulischen Parameter während der passiven Behandlung von eisenreichen, sauren Grubenwässern in biochemischen Reaktoren

Zusammenfassung

Das Ziel dieser Studie war die Untersuchung der Auswirkungen verschiedener reaktiver Stoffgemische und der Verweilzeiten (HRTs) auf die hydraulischen Parameter (hydraulische Leitfähigkeit, gesättigte Leitfähigkeit und Porosität) und die Effektivität von passiven biochemischen Reaktoren (PBRs) zur Behandlung von eisenreichen, sauren Grubenwässern (AMD). Fünf 10,7 L PBRs wurden mit drei reaktiven Stoffgemischen gefüllt, die entweder ein kohlenstoffreiches Substrat (60 Masse-%) oder einen inerten/neutralisierenden Stoff (50 Masse-%) enthielten. Die PBRs wurden über einen Zeitraum von 450 Tagen unter Verwendung von zwei eisenreichen AMD (4 und 1 g/L Eisen in AMD1 bzw. AMD2) sowie zwei HRTs von fünf und sieben Tagen getestet. Während der letzten Woche des Versuchsbetriebes wurde zusätzlich zu den monatlichen Messungen der Potentiale ein Tracertest (5 g/L NaCl) durchgeführt. Während des gesamten Versuchszeitraums wurden die Änderungen der HRTs und der gesättigten Leitfähigkeit bestimmt. Die PBRs erhöhten den pH-Wert der AMD von 3,5 auf 6 und entfernten Al, Cd, Cr, Ni, Pb und Zn (> 90 %). Eisen wurde jedoch nur teilweise und unbeständig entfernt. Die drei getesteten Stoffgemische zeigten keine wesentlichen Unterschiede, unabhängig von der HRT oder der AMD-Beschaffenheit. Die Ergebnisse des Tracertests und der gesättigten Leitfähigkeit zeigten keine signifikante Abnahme der hydraulischen Parameter, mit Ausnahme der Säule 3. In dieser wurde eine leichte Abnahme beobachtet. Obwohl die Sorption in den PRBs zu Versuchsbeginn eine maßgebliche Größe sein könnte, zeigte die Untersuchung der Stoffgemische nach Versuchsende, dass Eisen hauptsächlich als Oxyhydroxide und Sulfide zurückgehalten wurde. Angesichts der geringen Wirksamkeit der PBRs bei eisenreichen AMD wird eine Vorbehandlung zur Entfernung des Eisens empfohlen.

Cambios en la eficiencia y en los parámetros hidráulicos durante el tratamiento pasivo de drenaje ácido de minas ferriferrosas en reactores bioquímicos

Resumen

El objetivo de este estudio fue evaluar los efectos de distintas mezclas reactivas y diferentes tiempos de retención hidráulica (HRTs) sobre los parámetros hidráulicos (conductividad hidráulica, ksat y porosidad) y sobre la eficiencia de reactores bioquímicos (PBRs) para el tratamiento pasivo de drenaje ácido de minas ferriferrosas (AMD). Cinco PBRs de 10,7 L se rellenaron con tres mezclas reactivos conteniendo un sustrato rico en carbón (60% p/p) o un agente neutralizante/inerte (50% p/p). Los reactores fueron controlados durante un período de 450 días usando dos AMD ricos en hierro (4 y 1 g.L-1 Fe en AMD1 y AMD2, respectivamente) y dos HRTs (cinco y siete días). Durante la última semana de operación de las columnas, se realizó un ensayo con trazadores (5 g.L-1 de NaCl) además de las medidas mensuales utilizando el método de caída de cabeza. Los cambios en HRT y ksat fueron evaluados a lo largo de la experiencia. Los PBRs incrementaron el pH de los AMD desde 3,5 a 6 y removieron eficientemente Al, Cd, Cr, Ni, Pb y Zn (> 90%) mientras que Fe fue sólo parcial e inconsistentemente removido. No hubo diferencias significativas entre las tres mezclas testeadas independientemente del HRT y del AMD tratado. Los resultados del ensayo con trazadores y las medidas del ksat no mostraron un descenso significativo en los valores iniciales de los parámetros hidráulicos en el tiempo excepto para la columna 3 donde se observó un ligero descenso. Aunque la sorción podría haber sido importante durante la puesta en marcha de los PBRs, la caracterización posterior al estudio de las mezclas reactivas mostró que el Fe fue principalmente retenido como oxi-hidróxidos y sulfuros. Considerando la efectividad marginal de los PBRs para los AMD ricos en Fe, se recomienda un pre-tratamiento para remover el Fe.

Notes

Acknowledgements

This research was funded by the Canada Research Chair on Restoration of Abandoned Mine Sites and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the NSERC Polytechnique-UQAT Industrial Chair on the Environment and Mine Waste Management. The authors gratefully acknowledge the industrial and governmental partners of the industrial Chair for funding this study.

Supplementary material

10230_2018_514_MOESM1_ESM.tif (24.9 mb)
Fig. 1a) SEM images (secondary electron mode) and elemental maps for mixture #1 (TIF 25478 KB)
10230_2018_514_MOESM2_ESM.tif (24.9 mb)
Fig. 1b) SEM images (secondary electron mode) and elemental maps for mixture #2 (TIF 25478 KB)
10230_2018_514_MOESM3_ESM.tif (24.9 mb)
Fig. 1c) SEM images (secondary electron mode) and elemental maps for mixture #3 (TIF 25478 KB)

References

  1. AFNOR (Association Française de Normalisation) (1986) Testing water—determination of sulphate ions—nephelometric method. AFNOR—NF T90–040, St Denis, FranceGoogle Scholar
  2. Anello G, Lamarche P, Héroux JA (2005) Reduction of hydraulic conductivity changes in an in-ground bioreactor. J Environ Eng Sci 4:195–207CrossRefGoogle Scholar
  3. APHA (American Public Health Assoc) (2005) Standard methods for the examination of water and wastewater, 20th edn. In: Clesceri LS, Greenberg AE, Eaton AD (eds) American Public Health Assoc, American Water Works Assoc, Water Environment Federation, APHA-AWWA-WEF, Washington, DCGoogle Scholar
  4. ASTM (American Society for Testing Materials) (1995) Standard test method for permeability of granular soils. ASTM International, West Conshohocken, pp D 2434–2468Google Scholar
  5. ASTM (American Society for Testing Materials) (2009) Standard methods for sulphate reducing bacteria in water and water-formed deposits. ASTM International, West Conshohocken, pp D 4412–4484Google Scholar
  6. Ayora C, Caraballo MA, Macias F, Rötting TS, Carrera J, Nieto JM (2013) Acid mine drainage in the Iberian pyrite belt: lessons learned from recent passive remediation experiences. Environ Sci Pollut R 20:7837–7853CrossRefGoogle Scholar
  7. Baldwin SA, Khoshnoodi M, Rezadehbashi M, Taupp M, Hallam S, Mattes A, Sanei H (2015) The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage. Biotechnol Bioeng 3(27):1–13Google Scholar
  8. Bolis JL, Wildeman TR, Dawson HE (1992) Hydraulic conductivity of substrates used for passive acid mine drainage treatment. In: Proc national meeting of american soc for surface mining and reclamation, Duluth, pp 79–89Google Scholar
  9. Butler BA, Smith ME, Reisman DJ, Lazorchak JM (2011) Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. Environ Toxicol Chem 30:385–392CrossRefGoogle Scholar
  10. Champagne P, Van Geel P, Parker W (2005) A bench-scale assessment of a combined passive system to reduce concentrations of metals and sulphate in acid mine drainage. Mine Water Environ 24:124–133CrossRefGoogle Scholar
  11. Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulfate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277CrossRefGoogle Scholar
  12. Fogler HS (2006) Element of chemical reaction engineering, 4th edn. International series in the physical and chemical engineering sciences. Prentice Hall International Inc, Upper Saddle River, NJ, USA, p 1120Google Scholar
  13. Genty T, Bussière B, Neculita CM, Benzaazoua M, Zagury GJ (2011) Passive treatment of acid mine drainage: repeatability for sulphate reducing passive bioreactor column efficiency testing. In: Proc IMWA Congress, Aachen, pp 313–318Google Scholar
  14. Genty T, Bussière B, Potvin R, Benzaazoua M, Zagury GJ (2012a) Dissolution of different limestone in highly contaminated acid mine drainage: application to anoxic limestone drains. Environ Earth Sci 66:2387–2401CrossRefGoogle Scholar
  15. Genty T, Bussière B, Benzaazoua M, Zagury JG (2012b) Capacity of wood ashes filters to remove iron from acid mine drainage: assessment of metal retention mechanisms. Mine Water Environ 31:273–286CrossRefGoogle Scholar
  16. Genty T, Bussière B, Paradis M, Neculita CM (2016) Passive biochemical treatment of ferriferous mine drainage: Lorraine mine site, Northern Quebec, Canada. In: Proc international mine water assoc (IMWA), Conf, pp 790–795Google Scholar
  17. Genty T, Bussière B, Benzaazoua M, Neculita CM, Zagury GJ (2017) Efficiency of iron removal during the treatment of highly contaminated acid mine drainage in biochemical reactors. Water Sci Technol 76(7):1833–1843CrossRefGoogle Scholar
  18. Lewis AE (2010) Review on metal sulphide precipitation. Hydrometallurgy 104:222–234CrossRefGoogle Scholar
  19. Mendelhall W, Beaver RJ (1994) Introduction to probability and statistics, 9th edn. Duxbury Press, BelmontGoogle Scholar
  20. Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659CrossRefGoogle Scholar
  21. Neculita CM, Zagury GJ (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization. J Hazard Mater 157:358–366CrossRefGoogle Scholar
  22. Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16CrossRefGoogle Scholar
  23. Neculita CM, Zagury GJ, Bussiere B (2008a) Effectiveness of sulphate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23:3442–3451CrossRefGoogle Scholar
  24. Neculita CM, Zagury GJ, Bussiere B (2008b) Effectiveness of sulphate-reducing passive bioreactors for treating highly contaminated acid mine drainage: II. Metal removal mechanisms and potential mobility. Appl Geochem 23:3545–3560CrossRefGoogle Scholar
  25. Neculita CM, Vigneault B, Zagury GJ (2008c) Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Environ Toxicol Chem 27:1659–1667CrossRefGoogle Scholar
  26. Postgate JR (1984) The sulfate-reducing bacteria, 2nd edn. Cambridge Univ Press, CambridgeGoogle Scholar
  27. Rakotonimaro TV, Neculita CM, Bussière B, Zagury GJ (2016) Pre-treatment of iron-rich acid mine drainage using various dispersed alkaline substrates. Appl Geochem 73:12–23CrossRefGoogle Scholar
  28. Rakotonimaro TV, Neculita CM, Bussière B, Zagury GJ (2017) Comparative column testing of three reactive mixtures for the bio-chemical treatment of iron rich acid mine drainage. Miner Eng 11:79–89CrossRefGoogle Scholar
  29. Rötting T, Caraballo M, Serrano J, Ayora C (2008) Field application of calcite dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations. Appl Geochem 23:1660–1674CrossRefGoogle Scholar
  30. Seki K, Thullner M, Hanada J, Miyazaki T (2006) Moderate bioclogging leading to preferential flow paths in biobarriers. Ground Water Monit R 26:68–76CrossRefGoogle Scholar
  31. Seo J, Kwon D, Yoon TH, Jung J (2010) Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment. Toxicol Environ Health Sci 2:215–220CrossRefGoogle Scholar
  32. Skousen J, Zipper CE, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, Kleinmann RL (2017) Review of passive systems for acid mine drainage treatment. Mine Water Environ 36:133–153CrossRefGoogle Scholar
  33. Soleimani S, Van Geel P, Isgor B, Mostafa M (2009) Modeling of biological clogging in unsaturated porous media. J Contam Hydrol 106:39–50CrossRefGoogle Scholar
  34. Song H, Yim GJ, Ji SW, Neculita CM, Hwang TW (2012a) Pilot-scale passive bioreactors for treatment of natural acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. J Environ Manage 111:150–158CrossRefGoogle Scholar
  35. Song H, Yim GJ, Ji SW, Nam IH, Neculita CM, Lee GY (2012b) Performance of mixed organic substrates during the treatment of acidic and moderate mine drainage in column bioreactors. J Environ Eng ASCE 138:1077–1084CrossRefGoogle Scholar
  36. URS (United Registrar of Systems) (2003) Passive and semi-active treatment of acid rock drainage from metal mines-state of the practice. Prepared for US Army Corps of Engineers, ConcordGoogle Scholar
  37. USEPA (United States Environmental Protection Agency) (2014) Reference guide to treatment technologies for mining-influenced water. EPA 542-R-14–001. https://www.epa.gov/remedytech/reference-guide-treatment-technologies-mining-influenced-water. Accessed 29 Oct 2017
  38. Waybrant KR, Blowes DW, Ptacek CJ (1998) Selection of reactive mixtures for use in permeable reactive walls for treatment of acid mine drainage. Environ Sci Technol 32:1972–1979CrossRefGoogle Scholar
  39. Younger PL, Banwart SA, Hedin RS (2002) Mine water: Hydrogeology, pollution, remediation. In: Alloway BJ, Trevors JT (eds) Kluwer Academic Publ, Dordrecht, The Netherlands, p 442CrossRefGoogle Scholar
  40. Zagury GJ, Colombano SM, Narasiah KS, Ballivy G (1997) Stabilisation de résidus acides miniers par des résidus alcalins d’usines de pâtes et papier. Environ Technol 18:959–973Google Scholar
  41. Zagury GJ, Kulnieks V, Neculita CM (2006) Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64:944–954CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Genty
    • 1
  • Bruno Bussière
    • 1
  • Mostafa Benzaazoua
    • 1
  • Carmen M. Neculita
    • 1
  • Gérald J. Zagury
    • 2
  1. 1.Research Institute on Mines and Environment (RIME)University of Québec in Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada
  2. 2.Department of Civil, Geological, and Mining EngineeringPolytechnique Montréal, RIME-Polytechnique MontréalMontrealCanada

Personalised recommendations