Mobility and Behaviour of Metals in Copper Mine Tailings and Soil at Khetri, India

  • Anita Punia
  • N. Siva SiddaiahEmail author
Technical Article


The mobility and behaviour of metals (Cu, Zn, Ni, Cr, and Pb) in mine tailings and neighbouring soils were studied in the Khetri copper mine region, Rajasthan, India. Single reagent extraction was used to assess the mobility and availability of metals, while sequential chemical fractionation (water soluble, acidic, and reducible) was used to evaluate their behaviour in the environment. Samples were divided into two different physical grain size fractions to assess the impact of grain size on extraction. The mobility trend in both tailings and soil followed the order Ni > Zn > Cu. Metals of lithogenic origin (Cr and Pb) were less extracted in the water soluble fraction or non-residual fractions than those associated with mining. The acid leachable fraction was high in the tailings due to the presence of sulphide minerals. Hence, acidification of tailings would enhance leaching of metals. Results of single and sequential chemical extraction indicate that the Cu, Zn, and Ni are anthropogenic, as they were mostly associated with the non-residual fraction of the soil.


Single reagent extraction Sequential chemical fractionation Major oxides Khetri copper mine 

Mobilität und Verhalten von Metallen in Abraumhalden und Böden von Kupferminen in Khetri, Indien


Die Mobilität und das Verhalten von Metallen (Cu, Zn, Ni, Cr und Pb) in Abraumhalden und benachbarten Böden wurden in der Khetri-Kupfermine in Rajasthan (Indien) untersucht. Die Extraktion mit einem einzelnen Reagens diente dazu, die Mobilität und Verfügbarkeit dieser Metalle zu bewerten, während sequenzielle chemische Fraktionierung (wasserlöslich, sauer und reduzierbar) zur Bewertung ihres Verhaltens in der Umwelt eingesetzt wurde. Die Proben wurden in zwei verschiedene physikalische Korngrößenfraktionen unterteilt, um den Einfluss der Korngröße auf die Extraktion zu ermitteln. Der Mobilitätstrend in beiden Abraumhalden und im Boden folgte der Reihenfolge Ni > Zn > Cu. Metalle mit lithogenem Ursprung (Cr und Pb) wurden in der wasserlöslichen Fraktion und in rückstandslosen Fraktionen weniger extrahiert als die mit Bergbau in Verbindung stehenden Metalle. Aufgrund der Anwesenheit von Sulfidmineralien war die mit Säure extrahierbare Fraktion in den Abraumhalden hoch. Somit würde eine Ansäuerung der abgelagerten Rückstände die Auslaugung der Metalle verbessern. Die Ergebnisse der singulären Extraktionen und der sequenziellen chemischen Extraktion zeigen, dass Cu, Zn und Ni anthropogenen Ursprungs waren, da sie meist mit der rückstandslosen Bodenfraktion assoziiert waren.

Movilidad y comportamiento de los metales en los relaves y en el suelo de la mina de cobre en Khetri, India


Se estudió la movilidad y el comportamiento de metales (Cu, Zn, Ni, Cr y Pb) en relaves mineros y suelos vecinos en la región minera de cobre Khetri, Rajasthan, India. La extracción de reactivo único se utilizó para evaluar la movilidad y la disponibilidad de metales, mientras que el fraccionamiento químico secuencial (soluble en agua, ácido y reducible) se utilizó para evaluar su comportamiento en el medio ambiente. Las muestras se dividieron en dos fracciones de tamaño de grano diferentes para evaluar el impacto del tamaño de grano en la extracción. La tendencia de la movilidad en relaves y suelo siguió el orden Ni> Zn> Cu. Los metales de origen litogénico (Cr y Pb) se extrajeron menos en la fracción soluble en agua o o en fracciones no residuales que los asociados con la extracción. La fracción lixiviable por ácido fue alta en los relaves debido a la presencia de sulfuros. Por lo tanto, la acidificación de los relaves mejoraría la lixiviación de los metales. Los resultados de extracción química única y secuencial indican que Cu, Zn y Ni fueron de origen antropogénico ya que se asociaron principalmente con la fracción no residual del suelo.



研究了印度拉贾斯坦邦Khetri地区铜矿尾矿及附近土壤的金属(铜、锌、 镍、铬、和铅)活性和行为特征。单试剂提取用以评价金属活性和生物可获取性,顺序化学分离(水溶态、酸溶态和残渣态)用以评价金属环境行为特征。样品按粒径分成两部分以评价粒径对提取的影响。尾矿和土壤中金属活性顺序为镍>锌>铜。岩石成因金属(铬和铅)的水溶态和非残渣态比采矿成因更少。硫化物使尾矿的酸溶态更高。尾矿酸化将使更多金属滤出。单试剂提取与顺次化学分离结果表明铜、锌和镍属人类成因,多为土壤非残渣态。



We thank the Dean of the School of Environmental Sciences, Jawaharlal Nehru University for encouragement and DST (Purse-Phase-II) & UGC (UPE-II) for financial support. AP acknowledges the University Grant Commission for her Junior Research Fellowship.

Supplementary material

10230_2018_582_MOESM1_ESM.docx (730 kb)
Supplementary material 1 (DOCX 729 KB)
10230_2018_582_MOESM2_ESM.docx (10 kb)
Supplementary material 2 (DOCX 10 KB)


  1. Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90(3):543–556CrossRefGoogle Scholar
  2. Das M, Maiti SK (2008) Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond. Environ Monit Assess 137:343–350CrossRefGoogle Scholar
  3. Das Gupta SP (1968) The structural history of the Khetri copper belt, Jhunjhunu and Sikar districts, Rajasthan. Mem Geol Surv India 98:170Google Scholar
  4. Dwevedi A, Kumar P, Kumar P, Kumar Y, Sharma YK, Kayastha AM (2017) Soil sensors: detailed insight into research updates, significance, and future prospects. In: Grumezescu A (ed) New pesticides and soil sensors, Vol 10, Academic Press, Cambridge, pp 561–594CrossRefGoogle Scholar
  5. Filipek LH, Chao TT, Carpenter RH (1982) Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit. Chem Geol 33:45–64CrossRefGoogle Scholar
  6. Gee GW, Bauder JW (1986) Methods of soil analysis, Part 1, Physical and mineralogical methods—agronomy monograph no. 9, 2nd Edit. American Soc of Agronomy—Soil Science Soc of America, MadisonGoogle Scholar
  7. Geological Survey of India (1977) Geology and mineral resources of the states of Rajasthan, Part XII-Rajasthan. Misc Publ 30:33–34Google Scholar
  8. Giri S, Singh AK (2017) Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ Sci Pollut Res 24:14945–14956CrossRefGoogle Scholar
  9. Goldberg ED (1954) Marine geochemistry 1. Chemical scavengers of the sea. J Geol 62(3):249–265CrossRefGoogle Scholar
  10. Gupta P, Guha DB, Chattopadhyay B (1998) Basement–cover relationship in the Khetri copper belt and the emplacement mechanism of the granite massifs, Rajasthan. J Geol Soc India 52:417–432Google Scholar
  11. Hansen HK, Yianatos JB, Ottosen LM (2005) Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size. Chemosphere 60:1497–1503CrossRefGoogle Scholar
  12. Hendershot WH, Lalande H, Duquette M (1993) Soil reaction and exchangeable acidity. In: Carter MR (ed) Soil sampling and methods of analysis for canadian society of soil science. Lewis, Boca Raton, pp 141–145Google Scholar
  13. Kaur G, Mehta PK (2005) The Gothara plagiogranite: evidence for oceanic magmatism in a non-ophiolitic association, North Khetri copper belt, Rajasthan, India?. J Asian Earth Sci 25:805–819CrossRefGoogle Scholar
  14. Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89–100CrossRefGoogle Scholar
  15. Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2012) Chemical fractionation and contamination intensity of trace elements in stream sediments at the Sarcheshmeh porphyry copper mine, SE Iran. Mine Water Environ 31:199–213CrossRefGoogle Scholar
  16. Knight J, Joy S, Lowe J, Cameron J, Merrillees J, Nag S, Shah N, Dua G, Jhala K (2002) The Khetri copper belt, Rajasthan: iron-oxide copper-gold terrane in the Proterozoic of NW India. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 2. PGC Publ, Adelaide, pp 321–341Google Scholar
  17. Lee CG, Chon H-T, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16(11–12):1377–1386CrossRefGoogle Scholar
  18. Leppinen JO, Salonsaari P, Palosaari V (1997) Flotation in acid mine drainage control: beneficiation of concentrate. Can Metall Q 36:225–230CrossRefGoogle Scholar
  19. Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J Environ Qual 13:372–376Google Scholar
  20. McGrath D (1996) Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci Total Environ 178:37–44CrossRefGoogle Scholar
  21. McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J Contam Hydrol 33:247–271CrossRefGoogle Scholar
  22. Moore F, Aghazadeh AA (2012) Trace metal occurrence and mobility assessment in stream sediments near the Sungun porphyry copper deposit in northwest Iran. Mine Water Environ (2012) 31:29–39CrossRefGoogle Scholar
  23. Punia A, Siddaiah NS, Singh SK (2017) Source and assessment of heavy metal pollution at Khetri copper mine tailings and neighboring soil, Rajasthan, India. Bull Environ Contam Toxicol 99:633–641CrossRefGoogle Scholar
  24. Ramirez M, Massolo S, Frache R, Correa JA (2005) Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull 50(1):62–72CrossRefGoogle Scholar
  25. Rao CRM, Sahuquillo A, Sanchez JFL (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189:291–333CrossRefGoogle Scholar
  26. Rauret G, Rubio R, Lopez-Sachez JF (1989) Optimization of Tessier procedure for metal solid speciation in river sediments. Int J Environ Anal Chem 36:69–83CrossRefGoogle Scholar
  27. Salomons W (1993) Adoption of common schemes for single and sequential extractions of trace metal in soils and sediments. Int J Environ Anal Chem 51:34CrossRefGoogle Scholar
  28. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12CrossRefGoogle Scholar
  29. Tack F, Verloo M (1991) Estimation and testing of environmental effects of heavy metals in dredged materials. Proc, CATS Congress, K.VIV, Antwerpen, pp 3.55–59Google Scholar
  30. Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178:3–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations