Advertisement

Fine and Quantitative Evaluations of the Water Volumes in an Aquifer Above the Coal Seam Roof, Based on TEM

  • Kang ChenEmail author
  • GuoQiang Xue
  • WeiYing Chen
  • NanNan Zhou
  • Hai Li
Technical Article
  • 23 Downloads

Abstract

A strategy to quantitatively evaluate the water content of aquifers was developed using transient electromagnetic (TEM) geo-electrical data and a database of generalized specific capacities obtained by pumping tests. Through regression analysis, a local (site-dependent) relationship was established between the generalized specific capacity and the aquifer’s average resistivity. According to the relationship, the quasi-generalized specific capacity can be obtained using TEM data from across the entire survey area. The methodology was tested in a thick composite coal seam aquifer system with abundant water. By using the generalized specific capacities of 11 pumping wells and the average resistivities derived from TEM, a negative power function was established between the aquifer water volume and the area’s resistivity. Using the quasi-generalized specific capacity provided a clearer understanding.

Keywords

Transient electromagnetic method (TEM) Water volumes Quantitative estimate Pumping test 

Feine und quantitative Bewertung des Wasservolumens eines Aquifers über einem Kohleflöz mittels Transienten Elektromagnetik (TEM)

Zusammenfassung

Auf Basis Transienten Elektromagnetischer (TEM) geoelektrischer Daten und einer Datenbasis verallgemeinerter, durch Pumpversuche gewonnener spezifischer Förderraten wurde eine Strategie entwickelt, um den Wassergehalt von Aquiferen quantitativ zu bewerten. Mittels Regressionsanalyse wurde ein lokaler (standortabhängiger) Zusammenhang zwischen der verallgemeinerten spezifischen Förderrate und dem mittleren Wiederstand des Aquifers hergestellt. Gemäß diesem Zusammenhang kann die quasi-verallgemeinerte Förderrate unter Verwendung von TEM-Daten aus dem gesamten Betrachtungsraum abgeleitet werden. Die Methode wurde an einem mächtigen, zusammenhängenden Kohleflöz-Aquifersystem mit hoher Ergiebigkeit erprobt. Unter Verwendung der verallgemeinerten Förderraten aus 11 Pumpversuchen und den mittleren, mittels TEM abgeleiteten Wiederständen wurde eine negative Potenzfunktion zwischen dem Wasservolumen des Aquifers und dem Wiederstand im Betrachtungsraum aufgestellt. Die Verwendung der quasi-verallgemeinerten spezifischen Förderrate ermöglichte ein besseres Verständnis des Sachverhalts.

Evaluaciones cuantitativas de los volúmenes de agua en un acuífero sobre el techo de la veta de carbón, basado en TEM

Resumen

Se desarrolló una estrategia para evaluar cuantitativamente el contenido de agua de los acuíferos utilizando datos geo-eléctricos electromagnéticos transitorios (TEM) y una base de datos de capacidades específicas generalizadas obtenidas mediante pruebas de bombeo. A través del análisis de regresión, se estableció una relación local (dependiente del sitio) entre la capacidad específica generalizada y la resistividad promedio del acuífero. De acuerdo con la relación, la capacidad específica cuasi-generalizada se puede obtener usando datos TEM de toda el área de la encuesta. La metodología fue probada en un sistema acuífero de vetas gruesas de carbón compuesto con abundante agua. Al usar las capacidades específicas generalizadas de 11 pozos de bombeo y las resistividades promedio derivadas de TEM, se estableció una función de potencia negativa entre el volumen de agua del acuífero y la resistividad del área. El uso de la capacidad específica cuasi-generalizada brindó una comprensión más clara.

基于瞬变电磁法精细定量评价煤层顶板含水层涌水量

抽象

本文提出了一种利用瞬变电磁地电数据与单位涌水量数据相结合定量评价含水层富水性的方法。通过回归分析建立起单位涌水量与含水层平均电阻率之间的相关关系。将整个研究区内测得的瞬变电磁数据代入关系式中,可以得到一组拟单位涌水量数据,进而来定量评价全区的含水层富水性。我们将该方法用于一套巨厚复合煤系地层含水层中。在11个钻孔中进行了抽水试验得到了单位涌水量数据,并在对应位置进行了瞬变电磁探测,得到了平均电阻率数据。利用回归分析的方法对上述数据进行分析,我们找到了本区域内含水层水量与电阻率存在负幂函数关系。将全区的瞬变电磁实测数据代入负幂函数关系式中,得到了全区的拟单位涌水量。分析表明利用拟单位涌水量可以得到更加精细的含水层富水性结果。通过实测数据的对比分析,证明了该方法的优越性。

Notes

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2017YFC0601204), the National Natural Science Foundation of China (41474095), and the Open Foundation of Key Laboratory of Mineral Resources, Chinese Academy of Sciences (KLMR2015-09).

Supplementary material

10230_2018_573_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 10 KB)
10230_2018_573_MOESM2_ESM.pdf (479 kb)
Supplementary material 2 (PDF 479 KB)
10230_2018_573_MOESM3_ESM.pdf (471 kb)
Supplementary material 3 (PDF 471 KB)
10230_2018_573_MOESM4_ESM.pdf (482 kb)
Supplementary material 4 (PDF 482 KB)

References

  1. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62Google Scholar
  2. Bear J (1988) Dynamic of fluids in porous media. McGraw-Hill, New YorkGoogle Scholar
  3. Bukowski P (2011) Water hazard assessment in active shafts in Upper Silesian Coal Basin Mines. Mine Water Environ 30(4):302–311Google Scholar
  4. Cassiani G, Medina MA (1997) Incorporating auxiliary geophysical data into groundwater flow parameter estimation. Ground Water 35(1):79–91Google Scholar
  5. Chang J, Yu J, Su B (2017) Numerical simulation and application of mine TEM detection in a hidden water-bearing coal mine collapse column. J Environ Eng Geophys 22(4):223–234Google Scholar
  6. Chen CX, Lin M (1999) Groundwater dynamics. China University of Geosciences Press, Wuhan (in Chinese) Google Scholar
  7. Christensen NB, Sørensen KI (1998) Surface and borehole electric and electromagnetic methods for hydrogeological investigations. Eur J Environ Eng Geophys 3:75–90Google Scholar
  8. Clavier C, Coates G, Dumanoir J (1984) Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Soc Petrol Eng J 24(02):153–168Google Scholar
  9. Danielsen JE, Auken E, Jørgensen F, Søndergaard V, Sørensen KI (2003) The application of the transient electromagnetic method in hydrogeophysical surveys. J Appl Geophys 53(4):181–198Google Scholar
  10. Domenico PA, Schwartz FW (1997) Physical and chemical hydrogeology. Wiley, New York CityGoogle Scholar
  11. Dong S, Hu W (2007) Basic characteristics and main controlling factors of coal mine water hazard in China. Coal Geol Explor 35(5):34–38 (in Chinese) Google Scholar
  12. Goldman M, Rabinovich B, Rabinovich M, Gilad D, Gev I, Schirov M (1994) Application of the integrated NMR-TDEM method in groundwater exploration in Israel. J Appl Geophys 31(1):27–52Google Scholar
  13. Hantush MS (1960) Modification of the theory of leaky aquifers. J Geophys Res 65(11):3713–3725Google Scholar
  14. Hantush MS (1967) Flow of groundwater in relatively thick leaky aquifers. Water Resour Res 3(2):583–590Google Scholar
  15. Hatherly P (2013) Overview on the application of geophysics in coal mining. Int J Coal Geol 114:74–84Google Scholar
  16. Hu WY, Tian G (2010) Mine water disaster type and prevention and control countermeasures in China. Coal Sci Technol 1:45–47 (in Chinese) Google Scholar
  17. Ikard SJ, Kress W (2016) Electric-hydraulic correlations in layered aquifers: a case study of the surficial aquifer of Emirate Abu Dhabi, United Arab Emirates. J Environ Eng Geophys 21(4):187–200Google Scholar
  18. Islam MR, Islam MS (2005) Water inrush hazard in Barapukuria coal mine, Dinajpur District, Bangladesh. Bangladesh J Geol 24(1):1–17Google Scholar
  19. Jiang ZH, Yue JH, Liu ZX (2007) Application of mine transient electromagnetic method in forecasting goaf water. Chin J Eng Geophys 4(4):291–294 (in Chinese) Google Scholar
  20. Jiao Y (2006) Improvement of routine method to define influential radius in leaky confined aquifer. Rock Soil Mech 29(10):2779–2782 (in Chinese) Google Scholar
  21. Kafri U, Goldman M (2005) The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. J Appl Geophys 57(3):167–178Google Scholar
  22. Keith TZ (2014) Multiple regression and beyond: an introduction to multiple regression and structural equation modeling. Routledge, LondonGoogle Scholar
  23. Kelly WE (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Groundwater 15(6):420–425Google Scholar
  24. Kelly WE, Reiter PF (1984) Influence of anisotropy on relations between electrical and hydraulic properties of aquifers. J Hydrol 74(3–4):311–321Google Scholar
  25. Kumar KV, Porkodi K, Rocha F (2008) Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions. J Hazard Mater 151(2):794–804Google Scholar
  26. Li X (2002) The theory and application of transient electromagnetic sounding. Shaanxi Science Technology Press, Xi’an (in Chinese) Google Scholar
  27. Li H, Xue GQ, Zhou NN, Chen WY (2015) Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure Appl Geophys 172(10):2917–2929Google Scholar
  28. Liu SC, Liu ZX, Jang ZH (2005) Application of TEM in hydrogeological prospecting of mining district. J China Univ Min Technol 34(4):414 (in Chinese) Google Scholar
  29. Liu S, Yang S, Cao Y, Liu J (2010) Analysis about response of geoelectric field parameters to water inrush volume from coal seam roof. J Min Safety Eng 27(3):341–345 (in Chinese) Google Scholar
  30. Liu J, Liu S, Cao Y, Yang S (2013) Quantitative study of geoelectric parameter response to groundwater seepage. Chin J Rock Mech Eng 32(5):986–993 (in Chinese) Google Scholar
  31. Lu DB (2015) Subsurface visualization and monitor technique based on electrical resistivity tomography for complicated topography. Nanjing University, Nanjing (in Chinese) Google Scholar
  32. Ma Y, Wu Q, Zhang Z (2000) Research on prediction of water conducted fissure height in roof of coal mining seam. Coal Sci Technol 36(05):59–62 (in Chinese) Google Scholar
  33. Nabighian MN (1988) Electromagnetic methods in applied geophysics: theory, vol 1. Society of Exploration Geophysicists, TulsaGoogle Scholar
  34. Niwas S, Tezkan B, Israil M (2011) Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany. Hydrogeol J 19(2):307–315Google Scholar
  35. Peng SP (2008) Present study and development trend of the deepen coal resource distribution and mining geologic evaluation. Coal 17(2):1–11 (in Chinese) Google Scholar
  36. Priebe EH, Neville CJ, Rudolph DL (2018) Enhancing the spatial coverage of a regional high-quality hydraulic conductivity dataset with estimates made from domestic water-well specific-capacity tests. Hydrogeol J 26(3):395–405Google Scholar
  37. Robinson DA, Binley A, Crook N, Day LFD, Ferré TPA, Grauch VJS, Nyquist J (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Proc 22(18):3604–3635Google Scholar
  38. Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrig Drain Eng 129(5):348–359Google Scholar
  39. Singh SK (2008) Estimating aquifer parameters from early drawdowns in large-diameter wells. J Irrig Drain Eng 134(3):409–413Google Scholar
  40. Spies BR (1989) Depth of investigation in electromagnetic sounding method. Geophysics 54:872–888Google Scholar
  41. Šumanovac F, Weisser M (2001) Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains. J Appl Geophys 47(1):13–28Google Scholar
  42. Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. Soc Petrol Eng J 8(02):107–122Google Scholar
  43. Wu J, Cui FP, Zhao SQ, Liu SJ, Ceng YF, Gu YW (2013) Type classification and main characteristics of mine water disasters. J Chin Coal Soc 38(4):561–565 (in Chinese) Google Scholar
  44. Xue GQ, Li X, Gelius LJ, Qi ZP, Zhou NN, Chen WY (2015) A new apparent resistivity formula for in-loop fast sounding TEM theory and application. J Environ Eng Geophys 20(2):107–118Google Scholar
  45. Xue G, Chen W, Ma Z, Hou D (2018) Identifying deep coal-bed water-filled zones in China through the use of large loop TEM. J Environ Eng Geophys 23(1):135–142Google Scholar
  46. Yang C, Liu S, Wu R (2017) Quantitative prediction of water volumes within a coal mine underlying limestone strata using geophysical methods. Mine Water Environ 36(1):51–58Google Scholar
  47. Zhang J, Wang XS (2014) Multiple solutions of specific capacity for pumping wells and their application. Geotech Invest Surv 3:33–37Google Scholar
  48. Zhou X (2017) The specific well capacity is not the same as the transmissivity of the aquifer tapped by the well-for discussion with Mr. Lan Taiquan. Hydrogeol Eng Geol 44(2):184–188Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Simulation and Regulation of Water Cycle in River BasinChina Institute of Water Resources and Hydropower ResearchBeijingChina
  2. 2.Key Laboratory of Mineral Resources, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institutions of Earth SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations