Advertisement

Treatment of Lignite Mine Water with Lignite Fly Ash and Its Zeolite

  • Bably PrasadEmail author
  • Hemant Kumar
Technical Article
  • 40 Downloads

Abstract

As expected, a zeolite formed from lignite fly ash proved to be far more effective in treating the water from the Neyvelli lignite mines than the fly ash itself. Treatment of mine water at different doses with both materials revealed that the zeolite increased the pH from 2.73 to 8.58 and removed most of the hardness, including the Ca and Mg hardness, as well as the acidity from the mine water. In contrast, the fly ash increased the hardness, Ca, Mg, and sulphate in the mine water. The fly ash was partially effective in removing metals like Mn, Ni, Zn, and Cr. In contrast, increased dosing of lignite fly ash zeolite removed 98.6% of the Mn, 99.94% of the Fe, 96.35% of the Ni, 99.30% of the Cu, 19.15% of the Cd, and 100% of the Zn, Pb, and Cr from lignite mine water. The surface of the lignite fly ash particles were initially covered with loosely attached metals that were released in the acidic water, though due to its alkaline nature, it did partially remove the metals from the mine water.

Keywords

Fly ash zeolite Acid mine water Batch experiment Cation exchange capacity 

Behandlung von Braunkohlengrubenwasser mit Braunkohlenflugasche und deren Zeolith

Zusammenfassung

Erwartungsgemäß erwies sich zur Behandlung von Grubenwasser aus den Braunkohlengruben von Neyvelli ein aus Braunkohlenflugasche neugebildeter Zeolith als weitaus effektiver als die Flugasche selbst. Wasserbehandlungstests mit beiden Materialien und unter Verwendung variierender Dosierungen ergaben, dass der Zeolith den pH-Wert des Grubenwassers von 2,7 auf 8,6 anhob und den Großteil der Härte, einschließlich der Ca- und Mg-Härte, sowie die Azidität abtrennte. Im Gegensatz dazu führte die Behandlung mit Flugasche zu einer Freisetzung und damit Konzentrationserhöhung von Härte, Ca, Mg und Sulfat. Die alkalische Braunkohlenflugasche war zur Abtrennung von Metallen wie Mn, Ni, Zn und Cr nur bedingt wirksam. Demgegenüber gelang es, bei erhöhter Zeolith-Dosierung 98,6% Mn, 99,9% Fe, 96,4% Ni, 99,3% Cu, 19,2% Cd sowie 100% Zn, Pb und Cr aus dem Grubenwasser zu entfernen.

Tratamiento de agua de una mina de lignito con cenizas volantes de lignito y su zeolita

Resumen

Tal cual se esperaba, una zeolita formada a partir de las cenizas volantes de lignito mostró ser mucho más eficiente en el tratamiento de agua de las minas de lignito Neyvelli que las cenizas volantes por sí mismas. El tratamiento de agua de mina a diferentes dosis con ambos materiales, mostró que la zeolita incrementó el pH desde 2,7 a 8,6 y removió la mayor parte de la dureza incluyendo Ca y Mg, así como la acidez del agua de mina. En contraste, las cenizas volantes incrementaron la dureza, Ca, Mg y sulfato. Las cenizas volantes, que son alcalinas, fueron parcialmente efectivas en remover metales como Mn,Ni, Zn y Cr. En contraste, la zeolita removió 98,6% de Mn, 99,9% de Fe, 96,4% de Ni, 99,3% de Cu, 19,2% de Cd y 100% de Zn, Pb y Cr del agua de mina.

褐煤粉煤灰与沸石处理褐煤矿矿井废水

抽象

利用褐煤粉煤灰提炼出的沸石处理Neyvelli褐煤矿(印度)矿井废水的效果远比单纯利用粉煤灰的效果要好。两种处理材料的不同剂量配比试验表明,沸石可将矿井废水pH值由2.7提高至8.6,还能去除大部钙、镁硬度及酸度。相反,粉煤灰却提高矿井废水的硬度和钙、镁、硫酸盐含量。褐煤粉煤灰呈碱性,能够去除部分锰、镍、锌和铬。通过增加褐煤粉煤灰沸石剂量可以去除矿井废水中98.6%的锰、99.9%的铁、96.4%的镍、99.3%的铜、19.2%的镉和100%的锌、铅和铬。

Notes

Acknowledgements

The authors are grateful to the Ministry of Coal of the Government of India for funding the grant-in-aid project that permitted the investigation. Thanks are due to Dr. Amalendu Sinha, ex-director of the Central Institute of Mining and Fuel Research, Dhanbad, India for support during the investigation period. We are grateful to Dr. P.K. Singh, Director of Central Institute of Mining and Fuel Research, Dhanbad, for continuous encouragement and support. We also thank Mr B.B. Palai, Scientist, IMMT Bhubaneswar for providing XRF, XRD, and SEM analysis.

References

  1. Arnold EG, Lemore SC, Andrew DE (1992) Standard methods for examination of water and wastewater, 18th edn. American Public Health Assoc, Washington DCGoogle Scholar
  2. Cama J, Ayora C, Querol X, Gonor J (2005) Dissolution kinetics of synthetic zeolite NaP1and its implication to zeolite treatment of contaminated water. Environ Sci Technol 39:4871–4877.  https://doi.org/10.1021/es0500512 CrossRefGoogle Scholar
  3. Derkowski A, Franus W, Waniak-Nowicka H, Czimerova A (2007) Textural properties vs CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. Int J Miner Process 82:57–68.  https://doi.org/10.1016/j.minpro.2006.10.001 CrossRefGoogle Scholar
  4. Doye I, Duchesne J (2003) Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch leaching test. Appl Geochem 18:1197–1213.  https://doi.org/10.1016/S0883-2927(02)00246-9 CrossRefGoogle Scholar
  5. Feng D, Van Deventer JSJ, Aldrich (2004) Removal of pollutants from acidic mine wastewater using metallurgical by-product slags. Sep Purif Technol 40:61–67.  https://doi.org/10.1016/j.seppur.2004.01.003 CrossRefGoogle Scholar
  6. Grigorios I, Athanasios K, Nikolaos K, CharalamposV (2015) Zeolite development from fly ash and utilization in lignite minewater treatment. Int J Miner Process 139:43–50CrossRefGoogle Scholar
  7. Hollar H, Wirsching U (1985) Zeolites formation from fly ash. Fortschr Miner 63:21–43Google Scholar
  8. Inada M, Tsujimoto H, Eguchi Y, Enomoto N, Hojo J (2005) Microwave assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel 84:1482–1486.  https://doi.org/10.1016/j.fuel.2005.02.002 CrossRefGoogle Scholar
  9. Labuschagne PF, Usher BH, Matifield F (2005) Geohydrological management approaches for site closure in South African gold mines. In: Proc, 2nd International Conf on Processing and Disposal of Minerals Industry Wastes, PDMIW05. Falmouth, UKGoogle Scholar
  10. Maree JP, Du Plessis P (1994) Neutralisation of acidic effluents with limestone. Water Sci Technol 29:285–296.  https://doi.org/10.1016/j.envpol.2005.01.026 CrossRefGoogle Scholar
  11. Maree JP, Dingemans D, Van Tonder GJ, Mtimkulu S (1998) Biological iron (II) oxidation as pretreatment to limestone neutralization of acidic water. Water Sci Technol 38:331–337.  https://doi.org/10.1016/S0273-1223(98)00516-2 CrossRefGoogle Scholar
  12. Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J (1990) New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel 69:263–266.  https://doi.org/10.1016/0016-2361(90)90187-U CrossRefGoogle Scholar
  13. Moreno N, Querol X, Carles A (2001) Utilisation of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ Sci Technol 35:3526–3534.  https://doi.org/10.1021/es0002924 CrossRefGoogle Scholar
  14. Moriyama R, Takeda S, Onozaki M, Katayama Y, Shiota K, Fukuda T, Sugihara H, Tani Y (2005) Large scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution. Fuel 84:1455–1461.  https://doi.org/10.1016/j.fuel.2012.03.010 Google Scholar
  15. Murayama N, Takahashi T, Shuku k, Lee H, Shiba J (2008) Effect of reaction temperature on hydrothermal synthesis of potassium type zeolites from coal fly ash. Int J Miner Process 87:129–133.  https://doi.org/10.1016/j.minpro.2008.03.001 CrossRefGoogle Scholar
  16. Prasad B, Mortimer RJG (2011) Treatment of acid mine drainage using fly ash zeolite. Water Air Soil Pollut 218:667–679.  https://doi.org/10.1007/s11270-010-0676-6 CrossRefGoogle Scholar
  17. Prasad B, Maity S, Kumari S, Mortimer RJG (2012) Synthesis and characterisation of zeolite prepared from coal ash by hydrothermal process. Environ Technol 33:37–50.  https://doi.org/10.1007/s10661-014-3815-5 CrossRefGoogle Scholar
  18. Prasad B, Mahato AK, Mondal HK, Tewary BK (2013) Removal of ions and acidity from acid mine water using transformed fly ash. Mine Water Environ 32:133–138.  https://doi.org/10.1007/s10230-013-0222-z CrossRefGoogle Scholar
  19. Quirol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Solar A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423.  https://doi.org/10.1016/S0166-5162(02)00124-6 CrossRefGoogle Scholar
  20. Rios CA, Williams CD, Roberts CL (2008) Removal of heavy metals from acid mine drainage using coal fly ash, natural clinker and synthetic zeolites. J Hazard Mater 156:23–35.  https://doi.org/10.1016/j.jhazmat.2007.11.123 CrossRefGoogle Scholar
  21. Somerset V, Petrik l, Iwuoha E (2008) Alkaline hydrothermal conversion of fly ash filtrates into zeolite 3: removal of mercury and lead ion from wastewaters. J Environ Manag 87:113–125.  https://doi.org/10.4028/www.scientific.net/AMM.754-755.1035 CrossRefGoogle Scholar
  22. Sommerville R, Blissett R, Rowson N, Blackburn S (2013) Producing a synthetic zeolite from improved fly ash residue. Int J Miner Process 124:20–25.  https://doi.org/10.1007/s11356-015-4111-9 CrossRefGoogle Scholar
  23. Tsishvili GV, Andronikashvili TG, Kirov GN, Filizova LD (1992) Natural zeolites. Ellis Horwood, LondonGoogle Scholar
  24. Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for control of acid generation from sulphidic wastes. Waste Manag 22:631–636.  https://doi.org/10.1016/S0956-053X(01)00053-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Environment Management GroupCentral Institute of Mining and Fuel ResearchDhanbadIndia

Personalised recommendations