Advertisement

Mine Water and the Environment

, Volume 37, Issue 3, pp 482–492 | Cite as

Removal of Turbidity from Travertine Processing Wastewaters by Coagulants, Flocculants and Natural Materials

  • Vildan Onen
  • Pinar Beyazyuz
  • Esra Yel
Technical Article
  • 175 Downloads

Abstract

The sedimentation behaviour of travertine-processing wastewater containing a high concentration of suspended solids was investigated using different coagulation and flocculation methods. In batch experiments, four types of coagulants [FeC13, Al2(SO4)3, PACl, NaAlO2], six types of flocculants (40% MMW–40% HMW cationic, 30% MMW, 40% MMW, 40% HMW anionic and nonionic) and three types of natural materials (NMs) (sepiolite, zeolite, and pumice) were used to treat wastewater with an initial turbidity of 570–880 NTU. The optimum process conditions (dosage, mixing time/speed, sedimentation time, and pH) were investigated for each. Sedimentation performance was assessed by the effluent turbidity (T eff) values of the treated water. The best performances obtained were 99.3% (T eff = 4 NTU), 99.1% (T eff = 8 NTU), and 97.8% (T eff = 18 NTU) with 40% HMW anionic-cationic flocculants, zeolite, and FeCl3, respectively. Sludge properties, including sludge settling velocity (mm/min), sludge density (g/cm3), suspended solids (SS) content (mg/L), and sludge solids (%) were determined and compared under optimized conditions. The type of additive significantly affected performance. Travertine processing wastewater flocculation with polymeric materials and NMs, especially zeolite, was more favourable than coagulants in terms of both turbidity removal and sludge quality. Since zeolite is a NM, additional studies on using and recycling of the generated sludge as an industrial feedstock would be worthwhile.

Keywords

Marble Physicochemical treatment Pumice Sepiolite Zeolite 

Beseitigung der Trübung aus Abwasser der Travertinverarbeitung durch Flockungsmittel, Flockungshilfsmittel und natürliche Materialien

Zusammenfassung

Das Sedimentationsverhalten von Feststoffen, die in hohen Konzentrationen im Abwasser einer Travertinverarbeitung enthalten sind, wurde unter Anwendung verschiedener Flockungsmethoden untersucht. In Batch-Experimenten wurden vier Flockungsmittel (FeCl3, Al2(SO4)3, PACl, NaAlO2), sechs Flockungshilfsmittel (40%MMW- 40%HMW kationisch, 30%MMW, 40%MMW, 40%HMW anionisch und kationisch) und drei natürliche Materialien (Sepidolith, Zeolith, Bimsstein) bei Anfangstrübungen von 550-880 NTU getestet. Für alle wurden die optimalen Bedingungen ermittelt: Dosis, Rührgeschwindigkeit und –zeit, Sedimentationszeit und pH-Wert. Als Bewertungskriterium für die Sedimentationsleistung der verschiedenen Methoden diente die Trübung des behandelten Wassers (Teff). Die besten Reinigungsleistungen lagen bei 99.3% (Teff=4 NTU), 99.1% (Teff=8 NTU) und 97.8% (Teff=18 NTU) mit 40% HMW anionisch-kationischem Flockungshilfsmittel, Zeolit bzw. FeCl3. Die Schlammeigenschaften (Sedimentationsgeschwindigkeit in mm/min, Schlammdicht in g/cm3, Feststoffgehalt in % und in mg/L) wurden unter optimalen Bedingungen bestimmt und verglichen. Die Art der eingesetzten Stoffe beeinflusste signifikant die Sedimentationsleistung. Die Behandlung mit Polymeren und natürlichen Materialien, insbesondere Zeolith, ist sowohl wegen der Trübeentfernung als wegen der Schlammeigenschaften gegenüber Flockungsmitteln zu bevorzugen. Da Zeolith ein natürliches Material ist, wären Untersuchungen zur Nutzung und zum Recycling des erzeugten Schlammes als Sekundärrohstoff in der Industrie wünschenswert.

凝结剂、絮凝剂和天然材料去除石灰石石料加工厂废水浊度

凝结剂、絮凝剂和天然材料去除石灰石石料加工厂废水浊度

应用多种凝结剂和絮凝剂研究了石灰石石料加工厂含高浓度悬浮固体废水的沉淀行为。用四种凝结剂(FeC13、Al2(SO4)3、PACl和NaAlO2)、六种絮凝剂(40%MMW- 40%HMW 阳离子、30% MMW、40% MMW、40% HMW 阴离子和无离子)和三种天然材料(NMs)(海泡石、沸石和浮石) 批次试验方式处理了初始浊度570-880 NTU的石料加工厂废水。研究了每种处理试剂的最佳处理条件(剂量、混合时间/速度、沉淀时间和pH值)。利用出流液浊度(Teff)值评价沉淀效率。40% HMW 阴-阳离子絮凝剂、沸石和FeCl3的最佳效率分别为99.3% (Teff=4 NTU)、99.1% (Teff=8 NTU)、和97.8% (Teff=18 NTU)。对比了污泥沉降速度(mm/min)、污泥密度(g/cm3)、悬浮固体含量(SS)(mg/L)和污泥固体(%)等污泥质量指标。添加剂类型严重影响沉淀效率。聚合和天然絮凝剂(尤其是沸石)在同时去除石料加工厂废水浊度和保证污泥质量方面比凝结剂更具优势。沸石是天然材料,使用和回收水处理产生的污泥作为工业原料更值得深入研究。

Remoción de turbidez de aguas residuales del tratamiento de travertino usando coagulantes, floculantes y materiales naturales

Resumen

El comportamiento en la sedimentación de aguas residuales del tratamiento de travertino, que contienen una alta concentración de sólidos en suspensión, fue estudiada usando diferentes métodos de coagulación y floculación. Se usaron cuatro tipos de coagulantes (FeC13, Al2(SO4)3, PACl, NaAlO2), seis tipos de floculantes (40%MMW- 40%HMW catiónico, 30%MMW, 40%MMW, 40%HMW aniónico y no iónico) y tres tipos de materiales naturales (NMs) (sepiolita, zeolita y piedra gómez) en experimentos en batch para tratar aguas residuales con una turbidez inicial de 570-880 NTU. Se investigaron las condiciones óptimas del proceso (dosaje, tiempo de mezclado/velocidad, tiempo de sedimentación y pH) en cada caso. El comportamiento sedimentativo fue evaluado por los valores de turbidez del efluente (Teff) del agua tratada. Las mejores eficiencias obtenidas fueron 99,3% (Teff=4 NTU), 99,1% (Teff=8 NTU) y 97,8% (Teff=18 NTU) con floculantes 40% HMW aniónico-catiónico, zeolita y FeCl3, respectivamente. Las propiedades del lodo, incluyendo la velocidad de sedimentación (mm/min), la densidad del lodo (g/cm3), contenido de sólidos en suspensión (SS) (mg/L) y sólidos en el lodo (%) se determinaron y compararon bajo condiciones optimizadas. El tipo de aditivo afectó significativamente la eficiencia del proceso. El procesamiento de las aguas residuales por floculación usando materiales poliméricos y NMs, especialmente zeolita, fue más favorable que con los coagulantes en términos de remoción de turbidez y calidad del lodo. Como la zeolita es un NM, valdrían la pena realizar estudios adicionales sobre el uso y el reciclado del lodo generado como una materia prima industrial maximum heights of bed and residual bed separations. These technologies were applied to the 1307 working face in the Xinji No. 1 coal mine, in Huainan, Anhui Province. Menacing bed separation was identified in the nappe fault zone. The maximum heights of the bed and residual bed separations were 5.92~6.90 m and 1.97~2.30 m, respectively.

Notes

Acknowledgements

This study was supported by the Coordinatorship of Selcuk University Scientific Research Projects (Grant 09201104).

References

  1. Acar H (2001) Particular points in construction and operation of water recycling systems for marble processing plants. Proc, 3rd Marble Symp, Afyon/Turkey, pp 289–296 (in Turkish) Google Scholar
  2. Alkan M, Demirbas O, Dogan M (2005) Electrokinetic properties of sepiolite suspensions in different electrolyte media. J Colloid Interf Sci 281:240–248CrossRefGoogle Scholar
  3. Beall GW (2003) The use of organo-clays in water treatment. Appl Clay Sci 24:11–20CrossRefGoogle Scholar
  4. Celik MS, Ersoy B (2005) Mineral nanoparticles: electrokinetics. In: Schwarz JA, Contescu CI, Putyera K (eds) Encyclopedia of nanoscience and nanotechnology. Marcel-Dekker Inc, New York, pp 1991–2005Google Scholar
  5. Cengiz İ, Sabah E, Erkan ZE (2004) A research on the flocculation performance of traditional and UMA technology polymers. Mining Mag 43(1):15–20 (in Turkish) Google Scholar
  6. Del Curaa MÁG, Benaventea D, Martínez JM, Cuetoa N (2012) Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Constr Build Mater 28:456–467CrossRefGoogle Scholar
  7. Demirel H, Karapınar N, Akça K (1995) The use of bentonite and other clays as adsorbent. In: Köse H, Kızıl M (eds), Proc, industrial mineral symp, İzmir, pp 21–31 (in Turkish) Google Scholar
  8. Ehteshami M, Maghsoodi S, Yaghoobnia E (2016) Optimum turbidity removal by coagulation/flocculation methods from wastewaters of natural stone processing. Desalin Water Treat 57:20749–20757Google Scholar
  9. Ersoy B (2005) Effect of pH and polymer charge density on settling rate and turbidity of natural stone suspensions. Int J Miner Process 75:207–216CrossRefGoogle Scholar
  10. Ersoy B, Tosun I, Günay A, Dikmen S (2009) Turbidity removal from wastewaters of natural stone processing by coagulation/flocculation methods. Clean Soil Air Water 37(3):225–232CrossRefGoogle Scholar
  11. Ersoy B, Sariisik A, Dikmen S, Sariisik G (2010) Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technol 197:129–135CrossRefGoogle Scholar
  12. Gregory J (1985) The use of polymeric flocculants. Proc, engineering foundation conf on flocculation, sedimentation and consolidation, the Clister Sea Island. American Inst of Chemical Engineers, Georgia, pp 125–137Google Scholar
  13. Gregory J (1989) Fundamental of flocculation. Crit Rev Environ Contr 19(3):185–230CrossRefGoogle Scholar
  14. Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interf Sci 169:1–12CrossRefGoogle Scholar
  15. Guibai L, Gregory J (1991) Flocculation and sedimentation of high-turbidity waters. Water Res 25(9):1137–1143CrossRefGoogle Scholar
  16. Hogg R (2000) Flocculation of dewatering. Int J Miner Proc 58:223–236CrossRefGoogle Scholar
  17. Hogg R, Bunnaul P, Suharyono H (1993) Chemical and physical variables in polymer-induced flocculation. Miner Metall Proc 10:81–85Google Scholar
  18. Ipekoğlu U (1997) Dewatering methods. Dokuz Eylul Univ, İzmir (in Turkish) Google Scholar
  19. Irkeç T (1993) Utilization areas of sepiolite and results of research project of MTA-GIRIN consultation. MTA Nat Resour Econ Bull Ankara 2(5–6):32–37 (in Turkish) Google Scholar
  20. Kavakli M (2003) Treatment, control and characteristics of marble processing plant wastewaters. Proc, 4th Marble Symp, İzmit, pp 313–326 (in Turkish) Google Scholar
  21. Kim S, Palomino AM (2009) Polyacrilamide-treated kaolin: a fabric study. Appl Clay Sci 45:270–279CrossRefGoogle Scholar
  22. König TN, Shulami S, Rytwo G (2012) Brine wastewater pretreatment using clay minerals and organoclays as flocculants. Appl Clay Sci 67–68:119–124CrossRefGoogle Scholar
  23. Lagaly G (2006) Colloid clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amsterdam, pp 309–377CrossRefGoogle Scholar
  24. Mart U, Yüzer H, Sabah E, Çelik MS (2001) Viscosity behaviour of sepiolite in water-based systems. In: Karakaya ÇM, Karakaya N (eds), Proc, 10th national clay symp, Konya, pp 121–128 (in Turkish) Google Scholar
  25. Metcalf and Eddy (2003) In: Tchobanoglous G, Burton FL, Stensel HD (eds) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  26. Mousavi SM, Alemzadeh I, Vossoughi M (2006) Use of modified bentonite for phenolic adsorption in treatment of olive oil mill wastewater. Iran J Sci Technol 30:613–619Google Scholar
  27. Mpofu P, Mensah JA, Ralston J (2003) Investigation of the effect of the polymer structure type on flocculation rheology and dewatering behaviour of kaolinite dispersions. Int J Miner Proc 71:247–268CrossRefGoogle Scholar
  28. Mpofu P, Addai-Mensah J, Ralston J (2004) Flocculation and dewatering behaviour of smectite dispersions: effect of polymer structure type. Miner Eng 17:411–423CrossRefGoogle Scholar
  29. Nishkov I, Marinov M (2003) Calcium carbonate microproducts from marble treatment waste. In: Mineral processing in the 21st centrury. Djiev Trade, Sofia, pp 700–705Google Scholar
  30. Nyström R, Backfolk K, Rosenholm JB, Nurmi K (2003) Flocculation of calcite dispersions induced by the adsorption of highly cationic starch. Colloids Surf A 219:55–66CrossRefGoogle Scholar
  31. Onen V, Yel E (2013) Adsorption of ferrocyanide onto raw and acid-activated clinoptilolite and sepiolite: equilibrium modelling by error minimization. Clay Miner 48:613–626CrossRefGoogle Scholar
  32. Osborne DG (1978) Recovery of slimes by a combination of selective flocculation and flotation. Trans Inst Min Metall C 87:189–193Google Scholar
  33. Oteyaka B, Yamık A, Uçar A, Şahbaz O, Yılmaz B (2005) Precipitation behavior of Seyitömer clays. Proc, 19th international mining congress and exhibition of Turkey, pp 297–303 (in Turkish) Google Scholar
  34. Owen AT, Fowel PD, Swift JD (2002) The impact of polyacrylamidem flocculant solution age on flocculation performance. Int J Miner Process 67:123–144CrossRefGoogle Scholar
  35. Ozkan A, Yekeler M (2004) Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers. Chem Eng Process 43:873–879CrossRefGoogle Scholar
  36. Rossini M, Garrido JG, Galluzzo M (1999) Optimization of the coagulation–flocculation treatment: influence of rapid mix parameters. Water Res 33:1817–1826CrossRefGoogle Scholar
  37. Rytwo G, Rettig A, Gonen Y (2011) Organo-sepiolite particles for efficient pretreatment of organic wastewater: application to winery effluents. Appl Clay Sci 51:390–394CrossRefGoogle Scholar
  38. Rytwo G, Lavi R, Rytwo Y, Monchase H, Dultz S, König TN (2013) Clarification of olive mill and winery wastewater by means of clay–polymer nanocomposites. Sci Total Environ 442:134–142CrossRefGoogle Scholar
  39. Sabah E, Cengiz İ (2004) The effects of ionic groups of polyacrylamides on sedimentation behaviours of wastes of coal preparation plants. Proc, 14th coal congress, pp 113–140Google Scholar
  40. Seyrankaya A, Malayoglu U, Akar A (2000) Flocculation conditions of marble from industrial wastewater and environmental consideration. In: Ozbayoglu G (ed) Mineral processing on the verge of the 21st century. Balkema, Rotterdam, pp 645–652Google Scholar
  41. Solak M, Kiliç M, Yazici H, Şencan A (2009) Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems. J Hazard Mater 172:345–352CrossRefGoogle Scholar
  42. Stutzman T, Siffert B (1977) Contribution to the adsorption mechanism of acetamide and polyacrylamide on to clays. Clay Clay Miner 25:392–406CrossRefGoogle Scholar
  43. Tao D, Groppo JG, Parekh BK (2000) Enhanced ultrafine coal dewatering using flocculation filtration processes. Miner Eng 13:163–171CrossRefGoogle Scholar
  44. Tarlan-Yel E, Onen V (2010) Performance of natural zeolite and sepiolite in the removal of free cyanide and copper-complexed cyanide ([Cu(CN)3]2–). Clay Clay Miner 58(1):110–119CrossRefGoogle Scholar
  45. Tasdemir T, Kurama H (2012) Fine particle removal from natural stone processing effluent by flocculation. Eng Prog Sust Energy 32(2):317–324CrossRefGoogle Scholar
  46. Wang C, Harbottle D, Liu Q, Xu Z (2014) Current stage of fine mineral tailings treatment: a critical review on theory and practice. Miner Eng 58:113–131CrossRefGoogle Scholar
  47. Yu WZ, Gregory J, Campos L, Li G (2011) The role of mixing conditions on floc growth, breakage and re-growth. Chem Eng J 171:425–430CrossRefGoogle Scholar
  48. Zhao J, Su R, Guo X, Li W, Feng N (2014) Role of mixing conditions on coagulation performance and flocs breakage formed by magnesium hydroxide. J Taiwan Inst Chem Eng 45:1685–1690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mining Engineering, Faculty of EngineeringSelcuk UniversityCampus/KonyaTurkey
  2. 2.Department of Environmental Engineering, Faculty of EngineeringSelcuk UniversityCampus/KonyaTurkey

Personalised recommendations