Advertisement

Mine Water and the Environment

, Volume 37, Issue 3, pp 528–540 | Cite as

Hydrochemical Characteristics and Groundwater Source Identification of a Multiple Aquifer System in a Coal Mine

  • Jiazhong Qian
  • Yan Tong
  • Lei Ma
  • Weidong Zhao
  • Ruigang Zhang
  • Xiaorui He
Technical Article
  • 161 Downloads

Abstract

Hydrochemical analysis and Bayesian discrimination were used to identify groundwater sources for multiple aquifers in the Panyi Coal Mine, Anhui, China. The results showed that the Cenozoic top aquifer water were HCO3−Na+K−Ca and HCO3−Na+K−Mg types, which distinguished it from the other aquifers due to its low Na+ + K+ and Cl concentrations. The Cenozoic middle and Cenozoic bottom aquifer waters were mainly Cl−Na+K and SO4−Cl−Na+K types. The water types in the Permian fractured aquifer changed from Cl−Na+K to HCO3−Cl−Na+K and HCO3−Na+K moving away from the Panji anticline. In addition, HCO3 concentrations increased and Ca2+ concentrations decreased with depth in the aquifer. The Taiyuan limestone aquifers were of Cl−Na+K, SO4·Cl−Na+K, and HCO3·Cl−Na+K types, and are very difficult to distinguish from the other aquifers. The precision of the Bayesian discrimination based on groundwater chemistry was 86.09%. Water chemistry indicators in the Permian fractured aquifer were moderately to highly variable and moderately to strongly correlated, spatially. The water chemistry spatial distribution indicates that the Permian fractured aquifer is recharged by the Cenozoic bottom aquifer near the Panji anticline, which reduces the accuracy of Bayesian discrimination in that area.

Keywords

Water-inrush Hydrochemistry Geostatistics Bayesian discrimination 

煤矿多含水层系统的水化学特征和水源识别

抽象

利用水化学分析法和贝叶斯判别法识别了安徽潘一矿多含水层系统地下水源。结果表明,新生界顶部含水层水为HCO3-Na+K-Ca型和HCO3-Na+K-Mg型,以低浓度Na++K+和Cl-区别于其它含水层水。新生界中段和底部含水层水为Cl-Na+K型和SO4-Cl-Na+K型。二叠裂隙含水层水主要为Cl-Na+K型 至 HCO3-Cl-Na+K型和HCO3-Na+K型。另外,随含水层深度增大,HCO 3 - 浓度增大而Ca2+浓度减小。太原组灰岩含水层水类型为Cl-Na+K型、SO4·Cl-Na+K型和HCO3·Cl-Na+K型,难以与其它含水层区分。基于地下水化学特征的贝叶斯水源识别精确度达86.09%。二叠裂隙水水化学特征指标中至强变化且空间上中至强相关。水化学空间分布特征表明二叠裂隙含水层在潘一背斜附近接受新生界底部含水层水补给,贝叶斯水源判别在该区精度降低。

Hydrochemische Charakterisierung und Identifikation der Grundwasserherkunft in einem Multiplen Grundwasserleitersystem in einer Kohlenmine

Zusammenfassung

Hydrochemische Analysen und Bayesianische Diskriminanzanalysen (BDA) wurden genutzt um die Grundwasserherkunft für multiple Grundwasserleiter in der Panyi Kohlenmine, Anhui, China zu identifizieren. Die Ergebnisse zeigten, dass die hangenden känozoischen Wässer vom Typ HCO3-Na+K-Ca und HCO3-Na+K-Mg sind, was sie von den anderen Aquiferen durch die geringen Na++K+ und Cl- Konzentrationen unterscheidet. Der mittlere und untere Aquifer des Känozoikums sind hauptsächlich vom Typ Cl-Na+K und SO4-Cl-Na+K. Der Wassertyp in dem geklüfteten permischen Aquifer ändert sich von Cl-Na+K zu HCO3-Cl-Na+K und HCO3-Na+K und strömt der Panji - Antiklinale ab. Zusätzlich nehmen die HCO3- Konzentrationen mit zunehmender Tiefe im Aquifer zu und die Ca2+ Konzentrationen ab. Die Grundwasserleiter des Taiyuan - Kalksteins sind vom Typ Cl-Na+K, SO4•Cl-Na+K, und HCO3•Cl-Na+K und sind sehr schwer von den anderen Grundwässern zu unterscheiden. Die Genauigkeit der BDA auf Basis der Hydrochemie ist 86.09%. Hydrochemische Indikatoren im permischen Kluftaquifer waren räumlich mäßig bis stark variabel und mäßig bis stark korreliert. Die räumliche Verteilung der Wasserchemie zeigt, dass der permische Kluftaquifer aus dem känozoischen unteren Aquifer nahe der Panji – Antiklinale angereichert wird, was die Genauigkeit der BDA in dieser Region reduziert.

Características hidroquímicas e identificación del origen del agua subterránea de un sistema acuífero múltiple en una mina de carbón

Resumen

Los análisis hidroquímicos y el análisis discriminante de Bayes se utilizaron para identificar el origen de agua subterránea para acuíferos múltiples en la mina de carbón Panyi, Anhui, China. Los resultados mostraron que las aguas superiores del acuífero Cenozoico fueron del tipo HCO3-Na+K-Ca y HCO3-Na+K-Mg, lo que lo distinguió de otros acuíferos debido a su bajas concentraciones Na++K+ y Cl-. Las aguas medias e inferiores del acuífero cenozoico fueron principalmente del tipo Cl-Na+K y SO4-Cl-Na+K. Los tipos de agua en el acuífero Permian cambiaron del tipo Cl-Na+K a HCO3-Cl-Na+K y HCO3-Na+K alejándose del anticlinal Panji. En adición, las concentraciones de HCO3- se incrementaron y las concentraciones de Ca2+ decrecieron con la profundidad en el acuífero. Los acuíferos de piedra caliza Taiyuan fueron del tipo Cl-Na+K, SO4•Cl-Na+K y HCO3•Cl-Na+K y son muy difíciles de distinguir de otros acuíferos. La precisión del análisis discriminante de Bayes basado en la química del agua subterránea fue 86,09 %. Los indicadores de la química del agua en el acuífero fracturado fueron desde moderada a altamente variables y desde moderada hasta fuertemente correlacionados espacialmente. La distribución especial de la química del agua indica que el acuífero fractura es recargado por el acuífero Cenozoico inferior cerca de la anticlinal Panji que reduce la exactitud del análisis discriminante en esa área.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 41602256, 41641021, and 41301537) and the Science and Technology Fund of Land and Resources of Anhui Province (2016-k-11).

References

  1. Ahmadi SH, Sedghamiz A (2007) Geostatistical analysis of spatial and temporal variations of groundwater level. Environ Monit Assess 129(1–3):277–294CrossRefGoogle Scholar
  2. Antunes IMHR, Albuquerque MTD (2013) Using indicator Kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal). Sci Total Environ 442(15):545–552CrossRefGoogle Scholar
  3. Babiker IS, Mohamed AAM, Hiyama T (2007) Assessing groundwater quality using GIS. Water Resour Manag 21(4):699–715CrossRefGoogle Scholar
  4. Bengranine K, Marhaba TF (2003) Using principal component analysis to monitor spatial and temporal changes in water quality. J Hazard Mater 100(1–3):179–195CrossRefGoogle Scholar
  5. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, OxfordGoogle Scholar
  6. Dong W, Liu ZH (2008) Study on comprehensive evaluation of water resources carrying capacity based on FAHP principle. J Arid Land Resour Environ 10(22):6–10 (Chinese) Google Scholar
  7. Duan LX, Xie MY, Bai TB, Wang JJ (2016) A new support vector data description method of machinery fault diagnosis with unbalanced datasets. Expert Syst Appl 64:239–246CrossRefGoogle Scholar
  8. Gong L, Jin CL (2009) Fuzzy comprehensive evaluation for carrying capacity of regional water resources. Water Resour Manag 23(12):2505–2513CrossRefGoogle Scholar
  9. Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474CrossRefGoogle Scholar
  10. Guo XD, Fu BJ, Ma KM (2000) Spatial variability of soil nutrients based on geostatistics combined with GIS: a case study in Zunghua city of Hebei province. Chin J Appl Ecol 11(4):557–563Google Scholar
  11. Hobbs BF (1997) Bayesian methods for analyzing climate change and water resources uncertainties. J Environ Manag 49(4):53–72CrossRefGoogle Scholar
  12. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  13. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, San Diego 17: 291–293Google Scholar
  14. Júnez-Ferreira H, González J, Reyes E, Herrera GS (2016) A geostatistical methodology to evaluate the performance of groundwater quality monitoring networks using a vulnerability index. Math Geosci 48(1):25–44CrossRefGoogle Scholar
  15. Kanti KM, Rao PS (2008) Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Process Technol 200(1–3):300–305CrossRefGoogle Scholar
  16. Lee SI (1997) Geostatistical model validation using orthonormal residuals. KSCE J Civ Eng 1(1):59–66CrossRefGoogle Scholar
  17. Li S, Wang Z, Shi JB, Peng B (2012) Application of fuzzy mathematics in discriminating sources of water inrush in coal mine. Safe Coal Mines 43(7):136–139 (Chinese) Google Scholar
  18. Li PY, Qian H, Wu JH, Zhang YQ, Zhang HB (2013) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32(3):195–206CrossRefGoogle Scholar
  19. Li PY, Qian H, Howard KWF, Wu JH, Lyu X (2014) Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environ Monit Assess 186(3):1385–1398CrossRefGoogle Scholar
  20. Li PY, Qian H, Howard KWF, Wu JH (2015a) Building a new and sustainable “Silk Road economic belt”. Environ Earth Sci 74(10):7267–7270CrossRefGoogle Scholar
  21. Li PY, Qian H, Howard KWF, Wu JH (2015b) Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ Earth Sci 73(7):3403–3341CrossRefGoogle Scholar
  22. Li PY, Qian H, Zhou WF (2017) Finding harmony between the environment and humanity: an introduction to the thematic issue of the Silk Road. Environ Earth Sci 76(3):105. doi: 10.1007/s12665-017-6428-9 CrossRefGoogle Scholar
  23. Ma R, Shi JS, Liu JC, Gui CL (2014) Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: a case study in North China Plain. J Earth Sci 25(3):587–597CrossRefGoogle Scholar
  24. Ma L, Qian JZ, Zhao WD, Curtis Z, Zhang RG (2016) Hydrogeochemical analysis of multiple aquifers in a coal mine based on non-linear PCA and GIS. Environ Earth Sci 75(8):1–14CrossRefGoogle Scholar
  25. Matheron BG (1971) The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, Ecole Nationale Supérieure des Mines, ParisGoogle Scholar
  26. McBain J, Timusk M (2011) Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recogn Lett 32(7):1054–1061. doi: 10.1016/j.patrec.2011.01.019 (Source: DBLP) CrossRefGoogle Scholar
  27. Nikroo L, Kompani-Zare M, Sepaskhah AR, Shamsi SRF (2010) Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environ Monit Assess 166(1–4):387–407CrossRefGoogle Scholar
  28. Passarella G, Vurro M, D’Agostino V, Giuliano G, Barcelona MJ (2002) A probabilistic methodology to assess the risk of groundwater quality degradation. Environ Monit Assess 79(1):57–74CrossRefGoogle Scholar
  29. Rezaei M, Valipour M, Valipour M (2016) Modelling evapotranspiration to increase the accuracy of the estimations based on the climatic parameters. Water Conserv Sci Eng 1(3):1–11CrossRefGoogle Scholar
  30. Roiger RJ, Geatz MW (2003) Data mining: a tutorial based primer. Addison-Wesley Publishing Co., BostonGoogle Scholar
  31. Schmidtt SA (1969) Measuring uncertainty: an elementary introduction to Bayesian statistics. Addison-Wesley Publishing Co., BostonGoogle Scholar
  32. Shrestha S, Kazama f (2007) Assessment of surface water quality using multivariate statistical technique: a case study of the Fuji river basin, Japan. Environ Modell Softw 22(4):464–475CrossRefGoogle Scholar
  33. Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwater in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373(1–2):80–95CrossRefGoogle Scholar
  34. Uddameri V (2007) Bayesian analysis of groundwater quality in a semi-arid coastal county of south Texas. Environ Geol 51(6):941–951CrossRefGoogle Scholar
  35. Valipour M (2015) Temperature analysis of reference evapotranspiration models. Meteorol Appl 22(3):385–394CrossRefGoogle Scholar
  36. Valipour M (2016a) How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agric 6(4):53. doi: 10.3390/agriculture6040053 CrossRefGoogle Scholar
  37. Valipour M (2016b) Variations of land use and irrigation for next decades under different scenarios. Irriga 1:262–288. doi: 10.15809/irriga.2016v1n01p262-288 CrossRefGoogle Scholar
  38. Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441CrossRefGoogle Scholar
  39. Valipour M, Sefidkouhi MAG, Raeini-Sarjaz M (2017) Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric Water Manag 180:50–60CrossRefGoogle Scholar
  40. Waltonday K, Poeter E, Thompson A, Vaughan DJ (2009) Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs. Appl Geochem 24(12):2266–2282CrossRefGoogle Scholar
  41. Wang SQ, Zhu SL, Zhou CH (2001) Characteristics of spatial variability of soil thickness in China. Geogr Res 22(3):316–325Google Scholar
  42. Wang LH, Li GM, Dong YH, Han DM, Zhang JY (2015) Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper-middle reaches of the Shule River basin, northwestern China. Environ Earth Sci 73(4):1901–1915CrossRefGoogle Scholar
  43. Wu Y, Yu ZC (2011) Application of neural network in water source distinguishing of mine water inrush. Ind Mine Automat 60–62 (Chinese) Google Scholar
  44. Wu Q, Zhou WF (2008) Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction. Environ Geol 56(2):245–254CrossRefGoogle Scholar
  45. Wu J, Li P, Qian H, Duan Z, Zhang X (2014a) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982CrossRefGoogle Scholar
  46. Wu WY, Yin SY, Liu HL, Niu Y, Bao Z (2014b) The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation. Environ Monit Assess 186(10):6747–6756CrossRefGoogle Scholar
  47. Wunderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba, Argentina). Water Res 35(12):2881–2894CrossRefGoogle Scholar
  48. Xing YF, Zhang C, Wang JH (2016) Analysis and regularity of China’s coal mine water inrush accident in 2007 ~ 2014. Coal Technol 25(7):186–188 (Chinese) Google Scholar
  49. Yang DD, Ma L, Qian JZ, Chen LW, Cao XC (2010) Water inrush source of Xinzhuangzi coal mine identified with gray related degree method. In: Proc. 3rd international conf on environmental technology and knowledge transfer, UK, pp 981–984Google Scholar
  50. Zhang CL, Qian JZ, Zhao WD, Ma L (2010) The application of Bayesian approach to discrimination of mine water-inrush source. Coal Geol Explor 38(4):34–37 (Chinese) Google Scholar
  51. Zhao J, Fu G, Lei K, Li YW (2011) Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. J Environ Sci 23(9):1460–1471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jiazhong Qian
    • 1
  • Yan Tong
    • 1
  • Lei Ma
    • 1
  • Weidong Zhao
    • 1
  • Ruigang Zhang
    • 2
  • Xiaorui He
    • 1
  1. 1.School of Resources and Environmental EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.School of Civil EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations