Mine Water and the Environment

, Volume 37, Issue 3, pp 565–576 | Cite as

Assessment and Prevention of Water and Sand Inrush Associated with Coal Mining Under a Water-filled Buried Gully: A Case Study

  • Gangwei Fan
  • Dongsheng ZhangEmail author
  • Shizhong Zhang
  • Chengguo Zhang
Technical Article


Mining under a water-filled buried gully risks a potentially serious water and sand inrush, especially if the bedrock is thin. A case study was conducted at a Chinese coal mine, where the thin overlying overburden was covered by widely distributed gullies. Several empirical formulas and numerical modelling indicated that the overlying strata was almost totally fractured and that all of the conditions for an inrush were met. Pre-mining dewatering and grout injection were initiated. The groundwater table was lowered by 13 surface pumping wells and 33 underground upholes that were drilled around the gully. Those located at the bottom of the gully were generally better in aquifer dewatering than those located at the banks. A barrier was constructed to avoid a water inrush by injecting a chemical grout into the bottom of the buried gully through 25 surface holes. Field observations of the water table, underground water yield, and overburden movement prove the validity of the assessment methods and treatments.


Underground mining Buried gully Numerical modelling Aquifer dewatering Grout injection 




Beurteilung und Vermeidung von Wasser- und Sandeinbrüchen im Zusammenhang mit Kohlenabbau unter einer mit wassergesättigten Sedimenten gefüllten Erosionsrinne: Eine Fallstudie


Bei Abbau unter mit wassergesättigten Sedimenten gefüllten Erosionsrinnen kann es zu schwerwiegenden Wasser- und Sandeinbrüchen kommen, insbesondere wenn das Felshangend geringmächtig ist. In einem chinesischen Kohlenbergbau bei dem das geringmächtige Felshangend von ausgedehnten Erosionsrinnen überlagert wird, wurde eine Fallstudie durchgeführt. Einige empirische Formeln und nummerische Modellierung zeigten, dass das Hangend nahezu vollständig zerklüftet und die Bedingungen für einen Einbruch gegeben waren. Vorentwässerung und Injektionsmaßnahmen wurden veranlasst. Der Grundwasserspiegel wurde mit 13 Entwässerungsbohrungen von der Oberfläche aus und mit 33, um die Erosionsrinne herum ausgeführten untertägigen Fächerbohrungen, abgesenkt. Die Bohrungen am Fuße der Erosionsrinnen waren für die Entwässerung wirksamer als die in den Flanken. Mit 25 Bohrungen von der Tagesoberfläche aus wurde am Fuß der sedimentgefüllten Erosionsrinne mit chemischen Injektionsmitteln eine Barriere errichtet. Feldbeobachtung des Grundwasserspiegels, des untertägigen Wasserzuflusses und die Hangendbewegung belegen die Wirksamkeit der Verfahrensweise und der getroffenen Maßnahmen.

Relevamiento y prevención de la irrupción de agua y arena asociada con la minería de carbón debajo de un sumidero enterrado lleno de agua: un caso de estudio


La minería debajo de un sumidero enterrado relleno de agua implica un riesgo potencial de irrupción de agua y arena, especialmente si el lecho de rocas es delgado. El estudio de un caso se realizó en una mina de carbón china donde la capa superior estaba cubierta por sumideros ampliamente distribuidos. Varias formulas empíricas y modelos numéricos indicaron que el estrato de la cobertura estaba casi totalmente fractura y que estaban dadas todas las condiciones para una irrupción. Se iniciaron los desagotes pre-minería y la inyección de lechada. El nivel del agua subterránea se descendió a través de 13 pozos de bombeo de superficie y 33 agujeros subterráneos que se perforaron alrededor del barranco. Aquellos localizados en el fondo del sumidero fueron generalmente mejores en el desagote del acuífero que aquellos localizados en las orillas. Se construyó una barrera para impedir una irrupción de agua a través de la inyección de lechada en el fondo del sumidero enterrado a través de 25 agujeros desde la superficie. Las observaciones del nivel de agua, de la extensión del agua subterránea y del movimiento de la capa probaron la validez de los métodos de relevamiento y tratamiento.



We thank the National Natural Science Foundation of China (Grant 51504240), the National Key Basic Research Program of China (Grant 2015CB251600), Qing Lan Project (Grant Sujiaoshi (2016)15), the Fundamental Research Funds for the Central Universities (2017XKZD07), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for their financial support. The authors are also grateful for the helpful comments provided by the anonymous reviewers and the journal’s editors.

Supplementary material

10230_2017_487_MOESM1_ESM.eps (41.7 mb)
Suppl. Figure 1. The sections of the target gully zone: (a) The top surface of sand cover and bedrock (EPS 42717 KB)
10230_2017_487_MOESM2_ESM.eps (71.1 mb)
Suppl. Figure 1. The sections of the target gully zone: (b) The surface relief of the buried gully (EPS 72790 KB)


  1. Benko B, Stead D (1998) The Frank slide: a reexamination of the failure mechanism. Can Geotech J 35:299–311CrossRefGoogle Scholar
  2. Booth CJ (2002) The effects of longwall coal mining on overlying aquifers. Spec Publ Geol Soc Lond 198:17–45CrossRefGoogle Scholar
  3. Fan LM (1996) Controlling tecnological study onsuffosion hazard of coal shaftin shenfu minin area. Chin J Geol Hazard C 7:35–38 (Chinese)Google Scholar
  4. Fan GW, Zhang DS, Zhai DY, Wang X, Lu X (2009) Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully. J Coal Sci Eng (China) 15:346–350CrossRefGoogle Scholar
  5. Gandhe A, Venkateswarlu V, Gupta RN (2005) Extraction of coal under a surface water body—a strata control investigation. Rock Mech Rock Eng 38:399–410CrossRefGoogle Scholar
  6. Henn RW (1996) Practical guide to grouting of underground structures. American Soc of Civil Engineers, Reston, VACrossRefGoogle Scholar
  7. Kendorski FS (1993) Effect of high-extraction coal mining on surface and ground waters. In: Peng SS (ed) Proc, 12th International Conf on Ground Control in Mining, Morgantown, WV, pp 228–235Google Scholar
  8. Kendorski FS (2006) Effect of full-extraction underground mining on ground and surface waters a 25-year retrospective. In: Peng SS (ed) Proc, 25th International Conf on Ground Control in Mining, Morgantown, WV, pp 425–430Google Scholar
  9. Kesserû Z (1995) New Approaches and results on the assessment of risks due to undermining for mine’s safety and for protecting of water resources. Proc, International Conf on Water Resources at Risk, International Mine Water Assoc (IMWA), Denver, pp 53–72Google Scholar
  10. Kipko EJ (1988) Application of grouting techniques for the solution of environmental problems during mining. In: Proc, 3rd International Mine Water Congress. Australasian Inst of Mining and Metallurgy, Melbourne, pp 655–666Google Scholar
  11. Lai XP, Shan PF, Cai MF, Ren FH, Tan WH (2015) Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling. Int J Miner Metall Mater 22:1–11CrossRefGoogle Scholar
  12. Li G, Zhou W (2006) Impact of karst water on coal mining in North China. Environ Geol 49:449–457CrossRefGoogle Scholar
  13. Li WP, Sun R, Wang W, Zhang Z, Zhao X (2002) Study on the height of water flowing fractured zone formed by shallow coal mining in yu-shen-fu mine area of north shaanxi province and its environment-ecology sig-nificance. J Eng Geo 10:153–156Google Scholar
  14. Liu T (1981) Surface movements, overburden failure and its application. Coal Industry Press, BeijingGoogle Scholar
  15. Marschalko M, Treslin L (2009) Impact of underground mining to slope deformation genesis at Doubrava Ujala. Acta Montan Slovac 14:232–240Google Scholar
  16. Miao XX, Cui X, Wang JA, Xu JL (2011) The height of fractured water-conducting zone in undermined rock strata. Eng Geol 120:32–39CrossRefGoogle Scholar
  17. Morsy K, Peng S (2002) Numerical modeling of the goaf loading mechanism in longwall coal mines. In: Peng SS (ed) Proc, 21st International Conf on Ground Control in Mining, Morgantown, pp 58–67Google Scholar
  18. Morton KL, Van Mekerk F (1993) A phased approach to mine dewatering. Mine Water Environ 12:27–33CrossRefGoogle Scholar
  19. National Coal Board (1975) Subsidence Engineers’ Handbook. Mining Dept, UK National Coal Board, LondonGoogle Scholar
  20. Peng SS (2008) Coal mine ground control. 3rd edit, Published by Syd S Peng, Morgantown, WVGoogle Scholar
  21. Qian MG, Miao XX, He FL (1994) Analysis of key block in the structure of voussoir beam in longwal mining. J Chin Coal Soc 19:557–563Google Scholar
  22. Qian MG, Miao XX, Xu JL (1996) Theoretical study of key stratum in ground control. J Chin Coal Soc 21:225–230Google Scholar
  23. Saeedi G, Shahriar K, Rezai B (2013) Estimating volume of roof fall in the face of longwall mining by using numerical methods. Arch Min Sci 58:767–778Google Scholar
  24. Singh R (1986) Mine inundations. Int J Mine Water 5:1–28CrossRefGoogle Scholar
  25. Singh R, Atkins A (1983) Design considerations for mine workings under accumulations of water. Int J Mine Water 1:35–56CrossRefGoogle Scholar
  26. Stead D, Benko B (1998) The influence of underground workings on slope instability mechanisms. In: Moore D, Hungr O (eds) Proc, 8th International Congress International Assoc for Engineering Geology and the Environment. A A Balkema, Vancouver, pp 1493–1500Google Scholar
  27. Tammetta P (2013) Estimation of the height of complete groundwater drainage above mined longwall panels. Groundwater 51:723–734CrossRefGoogle Scholar
  28. Tang F (2009) Research on mechanism of mountain landslide due to underground mining. J Coal Sci Eng (China) 15:351–354CrossRefGoogle Scholar
  29. Tieman GE, Rauch HW (1987) Study of dewatering effects at an underground longwall mine site in the Pittsburgh seam of the northern Appalachian coalfield. Proc, USBM IC 9137, Pittsburgh. pp 72–89Google Scholar
  30. Wang XF, Zhang DS, Fan GW, Zhang CG (2011) Underground pressure characteristics analysis in back-gully mining of shallow coal seam under a bedrock gully slope. Min Sci Technol (China) 21:23–27CrossRefGoogle Scholar
  31. Wang XF, Zhang DS, Zhang CG, Fan GW (2013) Mechanism of mining-induced slope movement for gullies overlaying shallow coal seams. J Mt Sci 10:388–397CrossRefGoogle Scholar
  32. Warner J (2004) Practical handbook of grouting: soil, rock, and structures. Wiley, New York CityGoogle Scholar
  33. Wu YP, Lu MS (2004) Analysis of sand inrush generation condition in coal mining of shallow coal seam. Mine Pressure Roof C 21:57–61 (Chinese)Google Scholar
  34. Wu Q, Zhou W (2008) Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction. Environ Geol 56:245–254CrossRefGoogle Scholar
  35. Zhang JC, Peng SP (2005) Water inrush and environmental impact of shallow seam mining. Environ Geol 48:1068–1076CrossRefGoogle Scholar
  36. Zhang X, Sanderson D (1998) Numerical study of critical behaviour of deformation and permeability of fractured rock masses. Mar Petrol Geol 15:535–548CrossRefGoogle Scholar
  37. Zhang J, Shen B (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41:629–639CrossRefGoogle Scholar
  38. Zhang DS, Fan GW, Wang XF (2012) Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies. Int J Min Sci Technol 22:47–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Gangwei Fan
    • 1
    • 2
  • Dongsheng Zhang
    • 3
    Email author
  • Shizhong Zhang
    • 2
  • Chengguo Zhang
    • 4
  1. 1.Key Laboratory of Deep Coal Resource Mining, Ministry of Education of ChinaChina University of Mining and TechnologyXuzhouChina
  2. 2.School of MinesChina University of Mining and TechnologyXuzhouChina
  3. 3.State Key Laboratory of Coal Resources and Safe MiningChina University of Mining and TechnologyXuzhouChina
  4. 4.School of Mining EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations