Mine Water and the Environment

, Volume 36, Issue 4, pp 628–637 | Cite as

Adsorptive Performance of Surface-Modified Montmorillonite in Vanadium Removal from Mine Water

  • Opeyemi A. Oyewo
  • Maurice S. Onyango
  • Christian Wolkersdorfer
Technical Article


Montmorillonite modified with hexadecyltrimethylammonium bromide was used to remove vanadium (V) from synthetic and real mine water. Fourier transform infrared, X-ray diffraction, and scanning electron microscopy were used to characterise the adsorbent before and after adsorption, while the amount of V adsorbed was determined by ICP-OES. Batch adsorption was evaluated for dissolved V concentrations of 50–320 mg/L and V tailings seepage water from a South African mine. Adsorption capacity was affected by solution pH, temperature, sorbent mass, and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids. Equilibrium isotherm results revealed that V sorption follows the Freundlich isotherm, indicating that the sorbent surface was heterogeneous. A pseudo-second order kinetic model gave the best fit to the kinetic experimental data. The results of this study allow us to predict uptake efficiency of South African montmorillonite for V removal from mine water. However, the best adsorbent for the uptake of V or other contaminants will depend on the effluent to be treated.


Batch adsorption Transition metals Equilibrium Kinetics 




Adsorptionsergebnisse eines oberflächenmodifizierten Montmorillonits zur Beseitigung von Vanadium aus Grubenwässern


Um Vanadium (V) aus synthetischen und naturbelassenen Grubenwässern zu entfernen, wurde modifizierter Montmorillonit mit hexadecyltrimethylammonium Bromid verwendet. Fourier-Transformations-Infrarotspektrometer, Röntgenbeugung und Elektronenmikroskopie wurden eingesetzt, um die Absorber vor und nach der Adsorption zu charakterisieren; der Anteil an absorbiertem V wurde durch ICP-OES ermittelt. Batch Adsorption wurde für gelösteste V mit Konzentrationen von 50 bis 320 g/L ermittelt, sowie für V Sickerwässern aus Absetzteichen eines südafrikanischen Bergwerkes. Die Adsorptionsfähigkeit wird beeinflusst durch den pH-Wert der Lösung, durch die Temperatur, durch die Masse des Sorptionsmittels und die Ursprungskonzentration. Die elektrische Leitfähigkeit des Grubenwassers vor und nach der Absorption wurde gemessen, um die gelösten Stoffe zu bewerten. Die Gleichgewichts Isothermen zeigten deutlich, dass die V Sorption der „Freundlich“ Isotherme folgt, auch wenn die Sorptionsoberfläche heterogen ausgebildet ist. Ein pseudokinetisches Modell zeigt die beste Übereinstimmung mit den experimentell ermittelten Daten. Das Ergebnis dieser Arbeiten erlaubt uns die Vorhersage der Effektivität der südafrikanischen Montmorillonite zur V Entfernung aus Grubenwässern. Jedoch ist zu bedenken, dass der beste Absorber zur Aufnahme von V oder anderen Schadstoffen von dem zu behandelnden Abwasser abhängt.

Desempeño adsortivo de montmorillonita con superficie modificada en la remoción de vanadio de agua de mina


Se utilizó montmorillonita modificada con bromuro de hexadeciltrimetilamonio para remover vanadio(V) de agua sintética y agua de mina. Se utilizó infra-rojo con transformada de Fourier, difracción de rayos X y microscopía electrónica de barrido para caracterizar el adsorbente antes y después de la adsorción mientras la cantidad de V adsorbido se determinó por ICP-OES. Se utilizó adsorción batch para concentraciones de V de 50 a 320 mg/L y agua de infiltración en colas de V en una mina de Sudáfrica. La capacidad de adsorción fue afectada por el pH de la solución, temperatura, masa de sorbente y la concentración inicial. La medida de la conductividad eléctrica del agua de la mina antes y después de la adsorción se utilizó para estimar los sólidos totales disueltos. Las isotermas de equilibrio siguieron un modelo tipo Freundlich, indicando que la superficie del sorbete era heterogénea. Un modelo de pseudo-segundo orden ajustó mejor con los datos cinéticos experimentales. Los resultados de este estudio nos permitieron predecir la eficiencia de la remoción de V desde agua de mina utilizando montmorillonita de Sudáfrica. No obstante, el mejor adsorbente tanto para la adsorción de V o de otros contaminantes dependerá del efluente a ser tratado.



The authors thank the National Research Foundation (NRF) for funding this work and Dr. Divine Mbom and Mr J.O. Kitinya for their assistance in the characterization and sorption experiments. We are also grateful to Olga Oleksiienko and Mecha Achisa for assisting in modelling and for fruitful discussions. Taile Y. Leswfi corrected an earlier version of this paper.

Supplementary material

10230_2017_475_MOESM1_ESM.pdf (31 kb)
Supplementary material 1 (PDF 31 KB)
10230_2017_475_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 KB)


  1. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38(3):227–236CrossRefGoogle Scholar
  2. Ama OM, Mabuba N, Arotiba OA (2015) Synthesis, characterization, and application of exfoliated graphite/zirconium nanocomposite electrode for the photoelectrochemical degradation of organic dye in water. Electrocatalysis 6(4):390–397CrossRefGoogle Scholar
  3. Bergaya F, Lagaly G (2013) Handbook of clay science. 2nd edn, vol 5, Elsevier, AmsterdamGoogle Scholar
  4. Bhatnagar A, Minocha AK, Pudasainee D, Chung H-K, Kim S-H, Kim H-S, Lee G, Min B, Jeon B-H (2008) Vanadium removal from water by waste metal sludge and cement immobilization. Chem Eng Sci 144(2):197–204CrossRefGoogle Scholar
  5. Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: Batch and column tests. J Hazard Mater 183(1–3):590–595CrossRefGoogle Scholar
  6. Crans DC (2005) Fifteen years of dancing with vanadium. Pure Appl Chem 77(9):1497–1527CrossRefGoogle Scholar
  7. Department of Water Affairs and Forestry (1996) South African water quality guidelines. Domestic Use, Vol 1, 2nd edn. Department of Water Affairs and Forestry, PretoriaGoogle Scholar
  8. dos Anjos VE, Rohwedder JR, Cadore S, Abate G, Grassi MT (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl Clay Sci 99:289–296CrossRefGoogle Scholar
  9. Douglas MR (1984) Principles of adsorption and adsorption processes, vol 57(1974). Wiley-Interscience, CanadaGoogle Scholar
  10. Fosso-Kankeu E, Waanders F (2014) Metal ions adsorption affinity of clayey materials from the North West Province of South Africa. In: Sui W, Sun Y, Wang C (eds) Interdisciplinary response to mine water challenges, vol 4. International Mine Water Assoc, Xuzhou, pp 354–358Google Scholar
  11. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Water supply, Department of the Interior, vol 2254, 3rd edn. U.S. Geological Survey, Washington DCGoogle Scholar
  12. Hubert E, Wolkersdorfer C (2015) Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA 41(4):490–500CrossRefGoogle Scholar
  13. Kaczala F, Marques M, Hogland W (2009) Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Biores Tech 100(1):235–243CrossRefGoogle Scholar
  14. Klaassen CD (2001) Casarett and doull’s toxicology—the basic science of poisons. Medicine and health science, 8th edn, McGraw-Hill Education, New York CityGoogle Scholar
  15. Krystyna P, Tomasz W (2004) Determination of vanadium species in environmental samples. Talanta 64:823–829CrossRefGoogle Scholar
  16. Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426CrossRefGoogle Scholar
  17. Leung WC, Wong MF, Chua H, Lo W, Leung CK (2000) Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Sci Technol 41(12):233–240Google Scholar
  18. Lumei L, Xiqu W, Jacobso AJ (2009) Vanadium (IV) benzenedicarboxylate: a novel adsorbent for selective separations. J Mat Res 24(6):1901–1905Google Scholar
  19. Lynn EK, Kerry AK (2005) Treatment of produced water using a surfactant modified zeolite/vapour phase bioreactor system. Vol 2, Dept of Civil, Architectural and Environmental Eng, Univ of Texas, AustinGoogle Scholar
  20. Ma Y, Zhu J, He H, Yuan P, Shen W, Liu D (2010) Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectro Acta 76(2010):122–129CrossRefGoogle Scholar
  21. Madona LP, Samuel J, Chandrasekaran N, Mukherjee A (2014) Preparation and characterization of layer-by-layer coated nano metal oxides-polymer composite film using Taguchi design method for Cr(VI) removal. J Environ Chem Eng 2:1937–1946CrossRefGoogle Scholar
  22. Mahadevaiah N, Venkataramani B, Jai Prakash BS (2008) Interaction of chromate on surfactant modified montmorillonite: breakthrough curve study in fixed bed columns. Ind Eng Chem Res 47(6):1755–1759CrossRefGoogle Scholar
  23. Manohar DM, Noeline BF, Anirudhan TS (2005) Removal of vanadium (IV) from aqueous solutions by adsorption process with aluminum-pillared bentonite. Ind Eng Chem Res 44(17):6676–6684CrossRefGoogle Scholar
  24. Mariangela G, Gul K, Vincenzo B, Guisy L (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Springerbriefs in Green Chemistry for Sustainability, vol 2. Salerno, Fisciano, pp 15–24Google Scholar
  25. Mohana S, Acharya BK, Madamwar D (2009) Distillery spent wash: treatment technologies and potential applications. J Hazard Mater 163(1):12–25CrossRefGoogle Scholar
  26. Mozgawa W, Król M, Bajda T (2011) IR spectra in the studies of anion sorption on natural sorbents. J Mol Struct 993(1–3):109–114CrossRefGoogle Scholar
  27. Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr)oxide adsorbents. Water Res 10:37–146Google Scholar
  28. Namasivayam C, Sangeetha C (2006) Removal and recovery of vanadium (V) by adsorption on to ZnCl2 activated carbon: kinetics and isotherm. Adsorption 12:103–117CrossRefGoogle Scholar
  29. Okamura K, Sugiyama M, Obata H, Maruo M, Nakayama E, Karatani H (2001) Automated determination of vanadium(IV) and (V) in natural waters based on chelating resin seperation and catalytic detection with Bindschedler’s green leuco base. Anal Chim Acta 443(1):143–151CrossRefGoogle Scholar
  30. Onyango MS, Kitinya J, Hadebe H, Ojijo VO, Ochieng A (2012) Simultaneous adsorption and biodegradation of synthetic melanoidin onto using surfactant modified zeolite. Afr J Biotechnol 11(22):6083–6609Google Scholar
  31. Pablo MN, José M, Edgardo LC, Elsa MF (2015) Synthesis and characterization of HDTMA-organoclays: insights into their structural properties. Quím Nova 38(2):166–171Google Scholar
  32. Ramesh A, Hasegawa H, Maki T, Ueda K (2007) Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep Purif Technol 56(1):90–100CrossRefGoogle Scholar
  33. Riza Putra B, Darusman LK, Rohaeti E (2013) Carbon paste electrode hexadecyltrimethylammonium bromide modified natural zeolite for chromium(VI) detection. Indo J Chem 13(2):122–128CrossRefGoogle Scholar
  34. Rohrmann B (1985) Vanadium in South Africa. J S Afr Inst Min Metal 85:141–150Google Scholar
  35. Slimani MSH, Moussout AH, Boukhlifi F, Zegaoui O (2005) Adsorption of hexavalent chromium and phenol onto bentonite modified with hexadecyltrimethylammonium bromide (HDTMABr). J Adv Chem 8(2):114–116Google Scholar
  36. Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. J Environ Int 35(1):142–156CrossRefGoogle Scholar
  37. Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M (2008) Vanadium and cadmium in vivo effects in teleost cardiac muscle: Metal accumulation and oxidative stress markers. Comp Biochem Physiol C Toxicol Pharmacol 147(2):168–178CrossRefGoogle Scholar
  38. Srivastava VC, Mall ID, Mishra IM (2006) Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. J Chem Engr 117(1):79–91CrossRefGoogle Scholar
  39. Wang Y, Yin X, Sun H, Wang C (2016) Transport of vanadium (V) in saturated porous media: effects of pH, ionic strength and clay mineral. Chem Spec Bioavailab 28(1–4):7–12CrossRefGoogle Scholar
  40. Wolkersdorfer C (2008) Water management at abandoned flooded underground mines. Springer, BerlinGoogle Scholar
  41. Younger PL, Wolkersdorfer C, Bowell RJ, Diels L (2006) Partnership for acid drainage remediation in Europe (PADRE): building a better future founded on research and best practice. In: Barnisel RI (ed) Proc 7th International Conf on Acid Rock Drainage (ICARD), St. Louis, pp 2571–2574Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Opeyemi A. Oyewo
    • 1
  • Maurice S. Onyango
    • 1
  • Christian Wolkersdorfer
    • 2
    • 3
  1. 1.Department of Material, Metallurgical and Chemical EngineeringTshwane University of TechnologyPretoriaSouth Africa
  2. 2.SARChI Chair for Mine Water Management, Department of Environmental, Water, and Earth SciencesTshwane University of TechnologyPretoriaSouth Africa
  3. 3.Laboratory of Green ChemistryLappeenranta University of TechnologyMikkeliFinland

Personalised recommendations