Advertisement

Mine Water and the Environment

, Volume 37, Issue 1, pp 185–195 | Cite as

The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics

Technical Article
  • 242 Downloads

Abstract

Fault activation caused by construction, earthquakes, or mining can produce disastrous water-inrush episodes in underground mines. Fault activation is generally caused by stress concentration at the fault tip, so in this study, a computational model of a typical underground stope with a hidden fault was established to quantitatively assess the magnitude of the stress concentration of the stress fields of the fault-tip. Numerical simulation was performed using the extended finite element method and fracture mechanics. Stress intensity factors, which represent the magnitude of the stress concentration, were obtained using the interaction integral method to quantitatively evaluate the tip fields and assess the possibility of fault activation. The mining depth, fluid pressure, fault dip, and fault length were analyzed and the advance of a working face was simulated to determine whether underground mining would cause fault activation.

Keywords

Fault activation Modeling underground mining Stress intensity factors Aquifer Stress concentration 

Zusammenfassung

Störungsaktivierung durch Bautätigkeit, Erdbeben oder Bergbau kann zu verheerenden Wassereinbrüchen in untertägige Bergwerke führen. Störungsaktivierungen werden generell durch Stresskonzentration an der Störungsspitze verursacht. Daher wurde in dieser Studie ein Computermodell eines typischen Stoßes mit einer versteckten Störung aufgebaut, um das Ausmaß der Stresskonzentration des Stressfeldes der Störungsspitze quantitativ zu bewerten. Für die numerische Simulation wurden die Extended Finite Element Methode und die Störungsmechanik benutzt. Stressintensitätsfaktoren, die das Ausmaß der Stresskonzentration repräsentieren, wurden durch die Anwendung der Interaction Integral Methode gewonnen, um die Stressfelder der Störungsspitze quantitativ zu bewerten und die Möglichkeit der Störungsaktivierung. Die Abbautiefe, der Wasserdruck, das Fallen der Störung und die Länge der Störung wurden analysiert und der Abbaufortschritt wurden simuliert, um zu bestimmen, ob der Bergbau eine Störungsaktivierung verursachen würde.

Resumen

La activación de la falla causada por construcción, terremotos o minería puede producir desastrosos episodios de irrupción de agua en las minas subterráneas. La activación de fallas es causada generalmente por la concentración de estrés en la punta de la falla; así en este estudio, se estableció un modelo computacional de una típica mina subterránea con una falla oculta para relevar cuantitativamente la magnitud de la concentración del estres de los campos de estrés de la punta de la falla. Se realizó la simulación numérica usando el método del elemento finito extendido y la mecánica de fractura. Se obtuvieron los factores de intensidad del estrés, que representan la magnitud de la concentración del estrés, usando el método integral de interacción para evaluar cuantitativamente la punta de la falla y analizar la posibilidad de activación de la falla. Se analizaron la profundidad del trabajo minero, la presión del fluido, la longitud y la inmersión de la falla y el avance de la cara de trabajo fue simulado para determinar si la minería subterránea causaría la activación de la falla.

抽象

构造、地震或采矿引起的断层活化可引发灾害性煤矿突水。断层活化往往由断层尖端应力集中引起。建立含有隐伏断层的回采工作面概念模型,定量评价断层尖端应力集中强度。应用扩展有限元和断裂力学方法进行数值分析。应力强度因子代表应力集中,应用交互整合方法定量评价断层尖端应力场和断层活化可能性。采深、液体压力、断层落差、断层延伸长度和回采推进速度被模拟以确定断层是否活化。

Notes

Acknowledgements

The authors thank the China Scholarship Council (CSC) for their financial support. We are also grateful to all the reviewers and editors for their comments and suggestions.

References

  1. Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  2. Asferg JL, Poulsen PN, Nielsen LO (2007) A consistent partly cracked XFEM element for cohesive crack growth. Int J Numer Meth Eng 72(4):464–485CrossRefGoogle Scholar
  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRefGoogle Scholar
  4. Bense VF, Van Balen RT (2003) Hydrogeological aspects of fault zones on various scales in the Roer valley rift system. J Geochem Explor 78–79:317–320CrossRefGoogle Scholar
  5. Bordas S (2003) Extended finite element and level set methods with applications to growth of cracks and biofilms. PhD thesis, Northwestern University, EvanstonGoogle Scholar
  6. Bu WK, Mao XB (2009) Research on effect of fault dip on fault activation and water inrush of coal floor. Chin J Rock Mech Eng 28(2):386–394 (In Chinese) Google Scholar
  7. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  8. Chen ZH, Hu ZP (2011) Fracture mechanical model and criteria of insidious fault water inrush in coal mines. J Chin Univ Min Technol 40(5):673–677Google Scholar
  9. Christophe D, Nicolas M (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Method Eng 48:1741–1760CrossRefGoogle Scholar
  10. Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearon JRA., Thiercelin M, Cheng AHD (1994) The crack tip region in hydraulic fracturing. Proc R Soc Lond Ser 447:39–48CrossRefGoogle Scholar
  11. Detle B (2012) Inrush and mine inundation-a real threat to Australian coal mines? In: Proc. annual conf of the international mine water assoc (IMWA), Bunbury, pp 25–29Google Scholar
  12. Detournay S (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4(1):1–11CrossRefGoogle Scholar
  13. Dolbow J (1999) An extended finite element method with discontinuous enrichment for applied mechanics. Northwestern University, EvanstonGoogle Scholar
  14. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for crack growth with frictional contact. Comput Method Appl Mech 190(51–52): 6825–6846CrossRefGoogle Scholar
  15. EDI (Economic Development and Innovation) (2012) Fatalities in Queensland coal mines 1882–2012. Department of Employment, The State of Queensland, AustraliaGoogle Scholar
  16. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–527CrossRefGoogle Scholar
  17. Garagash G, Detourmay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67(1):183–192CrossRefGoogle Scholar
  18. Goddard JV, Evans JP (1995) Chemical changes and fluid–rock interaction in faults of crystalline thrust sheets. Northwestern Wyoming, USA. J Struct Geol 17:533–547CrossRefGoogle Scholar
  19. Gudmundsson A (2005) Effects of mechanical layering on the development of normal faults and dykes in Iceland. Geodin Acta 18:11–30CrossRefGoogle Scholar
  20. Gudmundsson A, Simmenes TH, Larsen B, Philipp SL (2010) Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. J Struct Geol 32:1643–1655CrossRefGoogle Scholar
  21. Huang H, Mao X, Yao B, Pu H (2012) Numerical simulation on fault water-inrush based on fluid–solid coupling theory. J Coal Sci Eng China 18(3):291–296CrossRefGoogle Scholar
  22. Kanninen MC, Popelar (1985) Advanced fracture mechanics. Oxford Eng Science Series. Oxford Univ Press, UKGoogle Scholar
  23. Khoei AR (2014) Extended finite element method: theory and applications. Wiley, ChichesterCrossRefGoogle Scholar
  24. Li FZ, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421CrossRefGoogle Scholar
  25. Li L, Yang T, Liang Z, Zhu W, Tang C (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85:276–288CrossRefGoogle Scholar
  26. Liang DX, Jiang ZQ, Guan YZ (2015) Field research: measuring water pressure resistance in a fault-induced fracture zone. Mine Water Environ 34:320–328CrossRefGoogle Scholar
  27. Liu ZJ, Hu YQ (2007) Solid–liquid coupling study on water inrush through faults in coal mining above confined aquifer. J Chin Univ Min Technol 32(10):1046–1050Google Scholar
  28. Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171CrossRefGoogle Scholar
  29. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl Mech 139 (1): 289–314CrossRefGoogle Scholar
  30. Mohammadi S (2008) Extended finite element method for fracture analysis of structure. Blackwell Publ, LondonCrossRefGoogle Scholar
  31. Motyka J, Bosch AP (1985) Karstic phenomena in calcareous–dolomitic rocks and their influence over the inrushes of water in lead–zinc mines in Olkusz region (South of Poland). Int J Mine Water 4:1–12CrossRefGoogle Scholar
  32. Nagashima T, Omoto Y, Tani S (2003) Stress intensity factor analysis of interface cracks using XFEM. Int. J Numer Methods Eng 56(8):1151–1173CrossRefGoogle Scholar
  33. Nicolas M, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833CrossRefGoogle Scholar
  34. Nicolas M, John D, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefGoogle Scholar
  35. Odintsev VN, Miletenko MA (2015) Water inrush in mines as a consequence of spontaneous hydrofracture. J Min Sci 51:423–434CrossRefGoogle Scholar
  36. Przemysław B (2011) Water hazard assessment in active shafts in Upper Silesian Coal Basin Mines. Mine Water Environ 30:302–311CrossRefGoogle Scholar
  37. Rapantova N, Swiatosław K, Arnost G, Christian W (2012) Quantitative assessment of mine water sources based on the general mixing equation and multivariate statistics. Mine Water Environ 31:252–265CrossRefGoogle Scholar
  38. Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 29(1):43–46CrossRefGoogle Scholar
  39. Sameh WAM, Broder JM (2012) Interpretation of groundwater flow into a fractured aquifer. Int J Geosci 3:357–364CrossRefGoogle Scholar
  40. Sian L, Victor B, Jenni T (2011) Fault architecture and deformation processes within poorly lithified rift sediments, central Greece. J Struct Geol 33:1554–1568CrossRefGoogle Scholar
  41. Wang JA, Park HD (2003) Coal mining above a confined aquifer. Int J Rock Mech Min Sci 40:537–555CrossRefGoogle Scholar
  42. Wu Q, Wang M, Wu X (2004) Investigations of groundwater bursting into coal mine seam floors from fault zones. Int J Rock Mech Min Sci 41:557–571CrossRefGoogle Scholar
  43. Yau JF, Wang SS (1984) An analysis of interface cracks between dissimilar isotropic materials using conservation integral in elasticity. Eng Fract Mech 20(3):423–432CrossRefGoogle Scholar
  44. Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360CrossRefGoogle Scholar
  45. Zhu W, Wei C (2011) Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ Earth Sci 62:43–54CrossRefGoogle Scholar
  46. Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería Geológica y Minera, ETS de Ingenieros de Minas y EnergíaUniversidad Politéncia de MadridMadridSpain
  2. 2.Center for Computational SimulationUniversidad Politécnica de MadridMadridSpain

Personalised recommendations