Mine Water and the Environment

, Volume 36, Issue 4, pp 463–478 | Cite as

Exploration of Diffuse and Discrete Sources of Acid Mine Drainage to a Headwater Mountain Stream in Colorado, USA

  • Allison Johnston
  • Robert L. Runkel
  • Alexis Navarre-Sitchler
  • Kamini Singha
Technical Article

Abstract

We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.

Keywords

Characterization Electrical resistivity Fluid conductivity 

Untersuchung diffuser und punktueller Einträge von saurem Grubenabwasser in einen Gebirgsquellfluss in Colorado, USA

Zusammenfassung

Der Einfluss von saurem Grubenabwasser (AMD) aus der Minnesota Mine, einem stillgelegten Gold und Silberbergbau, auf den Lion Creek, einem Gebirgsquellfluss in der Nähe von Empire (Colorado) wurde untersucht. Zielstellung war, die Quellen der AMD-Kontaminationen zu identifizieren und zu kartieren. Diese AMD-Einträge in den Vorfluter stammen sowohl aus diskreten Punktzuflüssen als auch aus diffusen, nicht objektiv sichtbaren Einträgen. Als Untersuchungsmethoden wurden neben geochemischen Beprobungen auch direkte Aufzeichnungen von elektrischen Leitfähigkeiten im Oberflächen- und Sickerwasser sowie elektrische Widerstandsabbildungen des Untergrundes (Elektrical Resistivity Imaging, ERI) verwendet. Die niedrigen pH-Werte im AMD-beeinflussten Wasser korrelieren mit hohen elektrischen Leitfähigkeiten und dienen als Grundlage für die Auswertung der ERI-Analysen. Aus den Widerstandwerten des Untergrundes können zwei diffuse Eintragsquellen in den Vorfluter identifiziert werden: (1) die Ausbreitung von zwei auch oberflächennah sichtbaren Sickerflächen im Untergrund und (2) Niederschlagsabflüsse, welche Salzablagerungen von den Flussbänken und aus den Tailing-Halden der Ostseite des Lion Creeks auswaschen. Zusätzlich bildet der durch die Tailing-Halden versickernde Niederschlag bei hydraulischer Anbindung des Untergrundes an den Vorfluter einen weiteren potenziellen diffusen Eintragspfad. Elektrische Leitfähigkeitswerte im Vorfluter sind am niedrigsten, wenn der Abfluss im Frühsommer hoch ist und stiegen über den Sommer infolge verminderter Abflussmengen an. Dieses Verhalten zeigt, dass die Konzentration der gelösten Stofffracht durch die Mischung von Grundwasserzuflüssen und Schneeschmelzwasser kontrolliert wird. Die gelöste Stofffracht ist im Frühsommer am höchsten und zeigt ein größeres Trübungssignal. Die Identifizierung von diffusen Eintragsquellen und von zeitlichen Veränderungen der gelösten Stofffracht erlaubt die Anwendung zielgerichteter Sanierungsoptionen.

Estabilidad de las cubiertas sobre minerales sulfurados en ambientes ácidos y de de baja temperatura

Resumen

Hemos investigado el impacto de la contaminación del drenaje ácido de mina (AMD) de la mina Minnesota, una mina de oro y plata inactiva, sobre Lion Creek, una corriente de montaña cerca de Empire, Colorado. El objetivo fue mapear las fuentes de contaminación con AMD, incluyendo fuentes discretas visibles en la superficie y otras difusas no evidentes fácilmente. Esto fue conseguida usando muestreo geoquímico, la conductividad eléctrica (EC) de la corriente y del fluido de filtración y la resistividad eléctrica (ERI) de la subsuperficie. El bajo pH del agua impactada por AMD correlacionó con los altos valores de EC del fluido que servió para el ERI. A partir del ERI, se identificaron dos fuentes de contaminación difusa que entraban a la corriente: (1) la extensión subsuperficial de dos caras de infiltración visibles en la superficie, y (2) el lavado provocado por la lluvia de las sales depositadas en la ribera y en la pila de relaves de la orilla oriental de Lion Creek. Adicionalmente, la lixiviación provocada por la lluvia en la pila de relaves es una potencial fuente difusa de contaminacion si la pila está conectada hidráulica y subterráneamente con la corriente. En la corriente EC fue mínimo cuando la descarga de la corriente fue máxima en el comienzo del verano y luego se incremento a través del verano a medida que la descarga de la corriente decreció, indicando que la concentración de los sólidos disueltos es controlada principalmente por la mezcla de agua subterránea y agua de deshielo. Los sólidos totales disueltos (TDS) son máximos en los principios del verano y muestra una larga señal diaria. La identificación de las fuentes difusas y la variabilidad en TDS a través del tiempo debería permitir opciones de remediación más específicas.

探查汇入美国科罗拉多州山间河流的弥散和分散型酸性矿山废水污染源

探查汇入美国科罗拉多州山间河流的弥散和分散型酸性矿山废水污染源

研究了已停产的Minnesota金银矿酸性矿山废水(AMD)对科罗拉多州Empire附近Lion山间河流的影响。研究旨在测绘酸性废水(AMD)污染源,包括地表可见分散污染源和不易分辨的弥散输入型污染源。研究方法包括地球化学取样、河流和渗流原位电导率(EC)测井和地层视电阻率成像(ERI)。流体受酸性废水(AMD)污染后pH值降低且电导率升高,该相关变化规律是视电阻率成像(ERI)分析的主要原理。依据ERI分析结果,识别出两种汇入山间河流的弥散型污染源:(1) 两个地表可见渗流污染源;(2) 冲刷河岸盐渍沉积的地表径流和Lion河东岸尾矿堆内径流。如果尾矿堆下伏地层与河水具有水力联系,淋滤尾矿堆的雨水也是潜在弥散污染源。夏初,河水流量最大,电导率(EC)最低;其后,河水流量减小,电导率(EC)逐渐增大;该现象表明山间河水溶解固体(TDS) 主要受地下水和雪融水混合水控制。TDS荷载初夏最大,表现出昼夜变化。弥散源辨识和TDS荷载变化规律研究有助于提高废水处理的针对性和有效性。

References

  1. August EE, McKnight DM, Hrncir DC, Garhart KS (2002) Seasonal variability of metals transport through a wetland impacted by mine drainage in the Rocky Mountains. Environ Sci Technol 36:3779–3786CrossRefGoogle Scholar
  2. Banks VJ, Palumbo-Roe B (2010) Synoptic monitoring as an approach to discriminating between point and diffuse source contributions to zinc loads in mining impacted catchments. J Environ Monit 12:1684–1698CrossRefGoogle Scholar
  3. Banks D, Younger PL, Arnesen R-T, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174CrossRefGoogle Scholar
  4. Baresel C, Destouni G, Gren IM (2006) The influence of metal source uncertainty on cost-effective allocation of mine water pollution abatement in catchments. J Environ Manag 78:138–148CrossRefGoogle Scholar
  5. Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Rocky Mountain basin. Hydrol Process 11:783–799CrossRefGoogle Scholar
  6. Bencala KE, Walters RA (1983) Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model. Water Resour Res 19:718CrossRefGoogle Scholar
  7. Besser JM, Leib KJ (1999) Modeling frequency of occurrence of toxic concentrations of zinc and copper in the Upper Animas River. In: Morganwalp DW, Buxton HT (Eds), USGS Water-Resources Investigations Report 99 4018 A, pp 75–81Google Scholar
  8. Bethune J, Randell J, Runkel RL, Singha K (2015) Non-invasive flow path characterization in a mining-impacted wetland. J Contam Hydrol 183:29–39CrossRefGoogle Scholar
  9. Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Netherlands, pp 129–156CrossRefGoogle Scholar
  10. Boyer EW, Hornberger GM, Bencala KE, McKnight DM (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–1647CrossRefGoogle Scholar
  11. Braddock WA (1969) Geology of the Empire Quadrangle Grand, Gilpin, and Clear Creek Counties Colorado. USGS Professional Paper 616. https://pubs.er.usgs.gov/publication/pp616
  12. Brooks PD, McKnight DM, Bencala KE (2001) Annual maxima in Zn concentrations during spring snowmelt in streams impacted by mine drainage. Environ Geol 40:1447–1454CrossRefGoogle Scholar
  13. Buselli G, Lu K (2001) Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J Appl Geophys 48:11–23CrossRefGoogle Scholar
  14. Butler BA, Ranville JF, Ross PE (2009) Spatial variations in the fate and transport of metals in a mining-influenced stream, North Fork Clear Creek, Colorado. Sci Total Environ 407:6223–6234CrossRefGoogle Scholar
  15. Byrne P, Reid I, Wood PJ (2013) Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales. Environ Monit Assess 185:2817–2832CrossRefGoogle Scholar
  16. Byrne P, Runkel RL, Walton-Day K (2017) Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream (in press Environmental Science and Pollution Research, Apr 2017) Google Scholar
  17. Caruso BS, Cox TJ, Runkel RL, Velleux ML, Bencala KE, Nordstrom DK, Julien PY, Butler BA, Alpers CN, Marion A, Smith KS (2008) Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review. Hydrol Process 22:4011–4021CrossRefGoogle Scholar
  18. Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315CrossRefGoogle Scholar
  19. Cunningham CG, Naeser CW, Marvin RF, Luedke RG, Wallace AR (1994) Ages of selected intrusive rocks and associated ore deposits in the Colorado mineral belt. USGS Bull 2109:1–37Google Scholar
  20. Day-Lewis FD, Singha K, Binley AM (2005) Applying petrophysical models to radar travel time and electrical resistivity tomograms: resolution-dependent limitations. J Geophys Res B Solid Earth 110:1–17CrossRefGoogle Scholar
  21. deGroot-Hedlin C (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613CrossRefGoogle Scholar
  22. DeNicola DM, Stapleton MG (2002) Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environ Pollut 119:303–315CrossRefGoogle Scholar
  23. Dodson MH (2004) Five-year review report for Clear Creek/Central City superfund site Gilpin and Clear Creek Counties. Colorado Health and Environment Hazardous Materials and Waste Division, DenverGoogle Scholar
  24. Ebraheem AM, Hamburger MW, Bayless ER, Krothe NC (1990) Study of acid mine drainage using earth resistivity measurements. Ground Water 28:361–368CrossRefGoogle Scholar
  25. Elder K, Dozier J, Michaelsen J (1991) Snow accumulation and distribution in an Alpine Watershed. Water Resour Res 27:1541–1552CrossRefGoogle Scholar
  26. Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199CrossRefGoogle Scholar
  27. Godsey SE, Kirchner JW, Clow DW (2009) Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23:1844–1864CrossRefGoogle Scholar
  28. Gozzard E, Mayes WM, Potter HAB, Jarvis AP (2011) Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK. Environ Pollut 159:3113–3122CrossRefGoogle Scholar
  29. Grayson RB, Gippel, CJ, Finlayson BL, Hart BT (1997) Catchment-wide impacts on water quality: the use of “snapshot” sampling during stable flow. J Hydrol 199:121–134CrossRefGoogle Scholar
  30. Hall FR (1970) Dissolved solids-discharge relationships: 1. Mixing models. Water Resour Res 6:845–850CrossRefGoogle Scholar
  31. Hall FR (1971) Dissolved solids-discharge relationships: 2. Applications to field data. Water Resour Res 7:591–601CrossRefGoogle Scholar
  32. Herbert RB (2006) Seasonal variations in the composition of mine drainage-contaminated groundwater in Dalarna, Sweden. J Geochemical Explor 90:197–214CrossRefGoogle Scholar
  33. Hornberger GM, Bencala KE, McKnight DM (1994) Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25:147–165CrossRefGoogle Scholar
  34. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14CrossRefGoogle Scholar
  35. Kimball BA, Runkel RL, Walton-Day K, Bencala KE (2002) Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA. Appl Geochem 17:1183–1207CrossRefGoogle Scholar
  36. Kimball BA, Church SE, Besser JM (2006) Lessons learned from the U.S. Geological Survey abandoned mine lands initiative—1997–2002. In: Proceedings of 7th international conference on acid rock drainage (ICARD), pp 944–963Google Scholar
  37. Kimball BA, Runkel RL, Walton-Day K (2010) An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: facilitating decisions for remediation of mine drainage. Appl Geochemistry 25:728–740CrossRefGoogle Scholar
  38. Kleinmann RLP (1991) Acid mine drainage: an overview. In: Proceedings of Energy in the 90’s. American Soc of Civil Engineers, Pittsburgh, PA, pp 281–286Google Scholar
  39. LaBrecque DJ (1996) The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 61:538CrossRefGoogle Scholar
  40. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156CrossRefGoogle Scholar
  41. Looby TB (1991) EPA superfund record of decision: Central City, Clear Creek. EPA ID: MOD006333975Google Scholar
  42. Lovering TS, Goddard EN (1950) Geology and ore deposits of the Front Range, Colorado. USGS Professional Paper 223. https://pubs.er.usgs.gov/publication/pp223
  43. Luther GW (1987) Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193–3199CrossRefGoogle Scholar
  44. Malan H, Bath A, Day J, Joubert A (2004) A simple flow-concentration modelling method for integrating water quality and water quantity in rivers. Water SA 29:305–312Google Scholar
  45. Martín-Crespo T, Martín-Velázquez S, Gómez-Ortiz D, De Ignacio-San José C, Lillo-Ramos J (2011) A geochemical and geophysical characterization of sulfide mine ponds at the Iberian Pyrite Belt (Spain). Water Air Soil Pollut 217:387–405CrossRefGoogle Scholar
  46. McDiffett WF, Beidler AW, Dominick TF, McCrea KD (1989) Nutrient concentration-stream discharge relationships during storm events in a first-order stream. Hydrobiologia 179:97–102CrossRefGoogle Scholar
  47. Mighanetara K, Braungardt CB, Rieuwerts JS, Azizi F (2009) Contaminant fluxes from point and diffuse sources from abandoned mines in the River Tamar catchment, UK. J Geochemical Explor 100:116–124CrossRefGoogle Scholar
  48. Moses C, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482CrossRefGoogle Scholar
  49. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571CrossRefGoogle Scholar
  50. Naicker K, Cukrowska E, McCarthy TS (2003) Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environ Pollut 122:29–40CrossRefGoogle Scholar
  51. Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chem Geol 283:3–17CrossRefGoogle Scholar
  52. Niyogi DK, Lewis WMJ, McKnight DM (2002) Effects of stress from mine draiange on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567Google Scholar
  53. Nordstrom DK (2009) Acid rock drainage and climate change. J Geochemical Explor 100:97–104CrossRefGoogle Scholar
  54. Nordstrom DK (2011) Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochemistry 26:1777–1791CrossRefGoogle Scholar
  55. NRCS (2015) Berthoud Summit SNOTEL Site 335. In: Nat Resour Conserv Serv SNOTEL Data. http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=335. Accessed 20 Jan 2016
  56. Oldenburg DW, Li Y (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64:403CrossRefGoogle Scholar
  57. Olías M, Nieto JM, Sarmiento AM, Cerón JC, Cánovas CR (2004) Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain). Sci Total Environ 333:267–281CrossRefGoogle Scholar
  58. Radtke DB, Davis JV, Wilde FD (2005) Specific electrical conductance. US Geological Survey Techniques of Water Resources Investigations, book 9, chapt A6, sec 6.3, pp 1–22. http://pubs.water.usgs.gov/twri9A6/pp. Accessed 1 Feb 2016
  59. Ramalho E, Carvalho J, Barbosa S, Monteiro Santos FA (2009) Using geophysical methods to characterize an abandoned uranium mining site, Portugal. J Appl Geophys 67:14–33CrossRefGoogle Scholar
  60. Rucker DF, Glaser DR, Osborne T, Maehl WC (2009a) Electrical resistivity characterization of a reclaimed gold Mine to delineate acid rock drainage pathways. Mine Water Environ 28:146–157CrossRefGoogle Scholar
  61. Rucker DF, Levitt MT, Greenwood WJ (2009b) Three-dimensional electrical resistivity model of a nuclear waste disposal site. J Appl Geophys 69:150–164CrossRefGoogle Scholar
  62. Runkel RL, Kimball BA, Walton-Day K, Verplanck PL, Broshears RE (2012) Evaluating remedial alternatives for an acid mine drainage stream: a model post audit. Environ Sci Technol 46:340–347CrossRefGoogle Scholar
  63. Runkel RL, Walton-Day K, Kimball BA, Verplanck PL, Nimick DA (2013) Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado. J Hydrol 489:26–41CrossRefGoogle Scholar
  64. Runkel RL, Kimball BA, Nimick DA, Walton-Day K (2016) Effects of flow regime on metal concentrations and the attainment of water quality standards in a remediated stream reach, Butte, Montana. Environ Sci Technol 50:12641–12649CrossRefGoogle Scholar
  65. Sarmiento AM, Nieto JM, Olías M, Cánovas CR (2009) Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Appl Geochem 24:697–714CrossRefGoogle Scholar
  66. Sims L, Guerra J (2014) Updated fact sheet central city/clear creek superfund site. https://www.colorado.gov/pacific/sites/default/files/HM_sf-cccc-2014-factsheet.pdf. Accessed 15 Nov 2014
  67. Sullivan AB, Drever JI (2001) Spatiotemporal variability in stream chemistry in a high-elevation catchment affected by mine drainage. J Hydrol 252:237–250CrossRefGoogle Scholar
  68. Taylor BE, Wheeler MC, Nordstrom DK (1984) Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochim Cosmochim Acta 48:2669–2678CrossRefGoogle Scholar
  69. Walton-Day K, Runkel RL, Kimball BA (2012) Using spatially detailed water-quality data and solute-transport modeling to support total maximum daily load development. J Am Water Resour Assoc 48:949–969CrossRefGoogle Scholar
  70. Yuval D, Oldenburg DW (1996) DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments. J Appl Geophys 34:187–198CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Allison Johnston
    • 1
  • Robert L. Runkel
    • 2
  • Alexis Navarre-Sitchler
    • 1
    • 3
  • Kamini Singha
    • 1
    • 3
  1. 1.Hydrologic Science and Engineering ProgramColorado School of MinesGoldenUSA
  2. 2.US Geological Survey Toxic Substances Hydrology ProgramBoulderUSA
  3. 3.Geology and Geological Engineering DepartmentColorado School of MinesGoldenUSA

Personalised recommendations