Mine Water and the Environment

, Volume 36, Issue 2, pp 264–272 | Cite as

Using Calcium Carbonate/Hydroxide and Barium Carbonate to Remove Sulphate from Mine Water

  • Vhahangwele Akinwekomi
  • Johannes P. Maree
  • Christian Wolkersdorfer
Technical Article


This study evaluated the effectiveness of using barium bicarbonate to remove sulphate from neutralized AMD. The Ba(HCO3)2 was produced by dosing a BaCO3 solution with CO2 to form Ba(HCO3)2. This greatly increased the barium ion concentration, which rapidly removed sulphate linked to either calcium or magnesium. Following sulphate removal, the Ca(HCO3)2 or Mg(HCO3)2 containing water can be stabilised by CO2 stripping with air, which results in CaCO3 precipitation. The MgCO3 remains in solution.


Acid mine drainage Sulphate removal Water treatment Solubility Precipitation 

Die Nutzung von Calciumkarbonat/-hydroxid und Bariumcarbonat zu Fällung von Sulfaten in Bergbauabwasser


In dieser Studie wird die Effektivität des Einsatzes von Bariumbicarbonat bei der Fällung von Sulfat zur Neutralisation von saurem Grubenwasser untersucht. Ba(HCO3)2 wird durch die Einleitung von CO2 in BaCO3-Lösung erzeugt. Durch erhöhte Bariumkonzentrationen wird Sulfat, welches an Calcium und Magnesium gebunden ist, gefällt. Nach dem Sulfatentzug, wird das Ca(HCO3)2- bzw. Mg(HCO3)2-haltige Wasser durch CO2-Entzug (Luft-Stripping-Verfahren) stabilisiert, was zur CaCO3-Fällung führt. MgCO3 verbleibt in der Lösung.

Aplicación de carbonato/hidróxido de calcio y bicarbonato de bario para el tratamiento de agua de mina


Se necesitan soluciones para el tratamiento de AMD. Este estudio se focalizó en la evaluación de la efectividad de usar bicarbonato de bario para la remoción de sulfato en AMD neutralizada. Ba(HCO3)2 se produjo dosificando una solución de BaCO3 con CO2. La carbonatación de BaCO3 incrementó la concentración de iones bario en solución debido a la formación de Ba(HCO3)2 que puede ser usado para una rápida remoción de sulfato cuando éste está asociado tanto a calcio como a magnesio. Luego de la remoción de sulfato con Ba(HCO3)2, el contenido en agua de Ca(HCO3)2 o Mg(HCO3)2 puede estabilizarse usando burbujeo de CO2 con air, resultando en la precipitación de CaCO3 mientras MgCO3 permanece en solución.



评价了重碳酸钡去除酸性废水中硫酸盐的效率。通过投入含CO2的BaCO3溶液生成Ba(HCO3)2。该反应大幅提高钡离子浓度,从而可以快速去除钙和镁硫酸盐。硫酸盐去除之后,减少溶液CO2浓度,含有Ca(HCO3)2 或 Mg(HCO3)2的溶液将生成CaCO3沉淀,而MgCO3仍保留于溶液。



The authors gratefully acknowledge financial support from the National Research Foundation, which has provided funding for Tshwane University of Technology projects through the Technology and Human Resources for Industry Programme (THRIP) and Rand Water for activities falling under the Rand Water Chair in Water Utilisation. We also thanks Dave Katlekgo Mpholoane and Makoena Sebone for their assistance with the laboratory work and Caliphs Zvinowanda for comments on an earlier version of this paper.


  1. APHA (American Public Health Association) (2012) Standard Methods for the examination of water and wastewater, 22nd edn. American Water Works Assoc, Water Environment Federation, Washington DCGoogle Scholar
  2. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Paktunc D, Gould WD, Johnson DB (2014) The geochemistry of acid mine drainage. In: Turekian HD, Holland KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 131–190CrossRefGoogle Scholar
  3. Bologo V, Maree JP, Carlsson F (2012) Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. Water SA 38(1):23–28Google Scholar
  4. Busenberg E, Plummer LN (1986) The solubility of BaCO3(cr) (witherite) in CO2-H2O solutions between 0 and 90 °C, evaluation of the association constants of BaHCO3 +(aq) and BaCO3(aq) between 5 and 80 °C, and a preliminary evaluation of the thermodynamic properties of Ba2+(aq). Geochim Cosmochim Acta 50(10):2225–2233. doi: 10.1016/0016-7037(86)90077-3 CrossRefGoogle Scholar
  5. Castillo J, Gomez-Arias A, Posthumus J, Welman-Purchase M, Heerden Ev (2015) Geochemical study of the interaction of acid and alkaline mine drainage with BaCO3. In: Brown A et al (eds) Agreeing on solutions for more sustainable mine water management. Gecamin, Santiago/Chile, pp 1–12 (electronic document).
  6. Coetzee H (2013) Flooding of the underground mine workings of the Witwatersrand gold fields. Proc, Reliable Mine Water Technology, IMWA conf, pp 937–942Google Scholar
  7. Coetzee H, Horstmann U, Ntsume G, Croukamp L (2003) The potential environmental impact of the decant of water from Witwatersrand. Proc, 8th International Congr on Mine Water and the Environment, Johannesburg, pp 201–217Google Scholar
  8. Department of Mineral Resources (2014) South Africa’s mineral industry 2012/2013. 30th edn. PretoriaGoogle Scholar
  9. Douglas GB (2014) Contaminant removal from acidic mine pit watervia in situ hydrotalcite formation. Appl Geochem 51:12–22CrossRefGoogle Scholar
  10. Expert Team of the Inter Ministerial Committee (2010) Mine water management in the Witwatersrand gold fields with special emphasis on acid mine drainage—report to the inter-ministerial committee on acid mine drainage. Council for Geoscience, PretoriaGoogle Scholar
  11. Eutech Instruments (2003) Instruction manual TN-100/T-100 portable turbidity meter. Eutech Instruments, SingaporeGoogle Scholar
  12. Gomez-Arias A, Castillo J, Welman-Purchase M, Posthumus J, Heerden Ev (2015) Evidences of effective treatment of alkaline mine drainage with BaCO3. In: Brown A et al (eds) Agreeing on solutions for more sustainable mine water management. Gecamin, Santiago/Chile, pp 1–12 (electronic document),
  13. Gusek JJ, Figuera LA (2009) Mitigation of metal mining influenced water, vol 2, The Soc of Mining, Metallurgy and Exploration (SME), Littleton, CO, USAGoogle Scholar
  14. Kamal NM, Sulaiman SK (2014) Bench-scale study of acid mine drainage treatment using local neutralisation agents. Malays J Fund Appl Sci 10(3):150–153Google Scholar
  15. Kun LE (1972) A report on the reduction of the sulphate content of acid mine drainage by precipitation with barium carbonate. Internal report, Anglo American Research LaboratoriesGoogle Scholar
  16. Loewenthal RE, Marais GvR (1976) Carbonate chemistry of aquatic systems: theory and application. Ann Arbor Science Publ, Ann Arbor, MI, USAGoogle Scholar
  17. Loewenthal RE, Wiechers HNS, Marais GvR (1986) Softening and stabilization of municipal waters. Water Research Commission Report, PretoriaGoogle Scholar
  18. Maila MD, Maree JP, Cele LM (2014) Acid mine water neutralisation with ammonium hydroxide and desalination with barium hydroxide. Water SA 40(3):521–528. doi: 10.4314/wsa.v40i3.16
  19. Maree JP (2008) Modified BaCO3 process, South Africa patent 2008/4014, CSIRGoogle Scholar
  20. Maree JP (2013) Treatment of sulphate rich water—MBO process. US Patent 8557124, Tshwane Univ of TechnologyGoogle Scholar
  21. McCarthy TS (2011) The impact of acid mine drainage in South Africa. S Afr J Sci 107:5–6CrossRefGoogle Scholar
  22. Motaung S, Maree J, De Beer M, Bologo L, Theron D, Baloyi J (2008) Recovery of drinking water and by-products from gold mine effluents. Int J Water Res Dev 24(3):433–450CrossRefGoogle Scholar
  23. Mullett M, Fornarelli R, Ralph D (2014) Nanofiltration of mine water: impact of feed pH and membrane charge on resource recovery and water discharge. Membranes 4:163–180Google Scholar
  24. Rukuni TT, Maree JP, Zvinowanda CM, Carlsson FHH (2012) Separation of magnesium hydroxide and barium sulphate from a barium sulphate—magnesium hydroxide mixed sludge by carbonation: the effect of temperature. J Civil Environ Eng 2(116):16–28Google Scholar
  25. Stumm W, Morgan JJ (1996) Aquatic chemistry—chemical equilibria and rates in natural waters, 3rd edn. Wiley and Sons, New York CityGoogle Scholar
  26. Swanepoel H, De Beer M, Liebenberg L (2012) Complete sulphate removal from neutralised acidic mine drainage with barium carbonate. Water Pract Technol 7(1):1–8Google Scholar
  27. Trusler GE, Edwards RI, Brouckaert CJ, Buckley CA (1988) The chemical removal of sulphates. Proc, 5th National Mtg of the S Afr Inst Chem Eng, Pretoria, pp W3-0–W3-11Google Scholar
  28. Vasquez Y, Escobar MC, Neculita CM, Ziv Arbeli Z, Roldan F (2016) Biochemical passive reactors for treatment of acid mine drainage: effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Chemosphere 153:244–253CrossRefGoogle Scholar
  29. Volman R (1984) The use of barium sulphide to remove sulphate from industrial effluents. MS Thesis, Univ of Stellenbosch, South AfricaGoogle Scholar
  30. Wolkersdorfer C (2008) Water management at abandoned flooded underground mines—fundamentals, tracer tests, modelling, water treatment. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Vhahangwele Akinwekomi
    • 1
  • Johannes P. Maree
    • 2
  • Christian Wolkersdorfer
    • 1
    • 3
    • 4
  1. 1.Tshwane University of TechnologyPretoriaSouth Africa
  2. 2.Phillert TrustPretoriaSouth Africa
  3. 3.SARChI Chair for Acid Mine Drainage TreatmentTshwane University of TechnologyPretoriaSouth Africa
  4. 4.Finnish Distinguished Professor for Mine Water Management, Laboratory of Green ChemistryLappeenranta University of Technology (LUT)MikkeliFinland

Personalised recommendations