Mine Water and the Environment

, Volume 36, Issue 3, pp 401–408 | Cite as

Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water

  • Oluranti Agboola
  • Touhami Mokrani
  • Emmanuel Rotimi Sadiku
  • Andrei Kolesnikov
  • Olubiyi Isola Olukunle
  • Johannes Phillippus Maree
Technical Article


We evaluated nanofiltration for separation of ions from acid mine drainage (AMD), using two composite nanofiltration membranes (Nano-Pro-3012 and NF90) as examples of the polyamide class of acid-stable membranes. The structure of the NF membranes was characterized by scanning electron and atomic force microscopy. The NF90 displayed a higher permeate flux than Nano-Pro-3012, with higher relative roughness at both pH values. Both membranes suitably rejected most of the metals found in the AMD, but the Nano-Pro-3012 membrane proved unsuitable for sulphate removal.


Toxic contaminants Pore size Surface roughness Solute rejection Flux 




Wir bewerteten die Nanofiltration als Methode zur Abtrennung von Ionen aus saurem Grubenwasserunter Verwendung von zwei Komposit-Nanofiltrationsmembranen (Nano-Pro-3012 and NF90) als Beispiele für säurestabile Polyamid-Membranen. Die Struktur der Nanofiltrationsmembranen wurde durch Scanning-Elektronenmikroskopie und Atomkraftmikroskopie charakterisiert. NF90 zeigte einen höheren Permeatfluss als Nano-Pro-3012 mit höherer relativer Unschärfe bei beiden pH-Werten. Beide Membranen hielten hinreichend die meisten der im sauren Grubenwasser gefundenen Metalle zurück. Nano-Pro-3012 erwies sich allerdings als ungeeignet für die Rückhaltung von Sulfat.


Hemos evaluado la nanofiltración de iones de drenaje ácido de minas (AMD), usando 2 membranas de nanofiltración de composite (Nano-Pro-3012 y NF90) como ejemplos de membranas de poliamida resistentes a medio ácido. La estructura de las membranas NF fue caracterizada por microscopía electrónica de barrido y microscopía de fuerza atómica. La NF90 mostró un mayor flujo de permeación que Nano-Pro-3012, con mayor rugosidad relativa a ambos valores de pH. Ambas membranas rechazaron la mayoría de los metales presentes en el AMD, pero la membrana Nano-Pro-3012 mostró ser inadecuada para la remoción de sulfato.

Supplementary material

10230_2016_427_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 KB)
10230_2016_427_MOESM2_ESM.tif (710 kb)
Supplementary material 2 (TIF 710 KB)
10230_2016_427_MOESM3_ESM.pdf (111 kb)
Supplementary material 3 (PDF 110 KB)
10230_2016_427_MOESM4_ESM.pdf (132 kb)
Supplementary material 4 (PDF 131 KB)
10230_2016_427_MOESM5_ESM.pdf (190 kb)
Supplementary material 5 (PDF 190 KB)


  1. Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes: a review. Environ Chem Lett 12:241–255CrossRefGoogle Scholar
  2. Al-Zoubi H, Rieger A, Steinberger P, Pelz W, Haseneder R, Härtel G (2010) Optimization study for treatment of acid mine drainage using membrane technology. Sep Sci Technol 45:2004–2016CrossRefGoogle Scholar
  3. Berg P, Hagmeyer G, Gimbel R (1997) Removal of pesticides and other micropollutants by nanofiltration. Desalin 113:205–208CrossRefGoogle Scholar
  4. Bowen WR, Hilal N, Lovitt RW, Wright CJ (1998) A new technique for membrane characterization: direct measurement of the force of adhesion of a single particle using atomic force microscopy. J Membr Sci 139:269–274CrossRefGoogle Scholar
  5. Chin TD, Black BD, Perry SAL (2002) Implementation of arsenic treatment systems, part 2: design considerations, operation, and maintenance. AWWA Research Foundation and American Water Works Assoc, Washington DCGoogle Scholar
  6. Fu F, Wang Q (2011) Removal of heavy metals ions from waste water: a review. J Environ Manage 92:407–418CrossRefGoogle Scholar
  7. Gregor HP (1976) Fixed-charge ultrafiltration membranes. In: Sélégny E (ed), Charge Gels and Membranes, Ch 11, R. Reidel Publ Co, DordrechtGoogle Scholar
  8. Hanemaaijer JH, Robbertsen T, Van Den Boomgaard TH, Gunnick JW (1989) Fouling of ultrafiltration membranes: the role of protein adsorption and salt precipitation. J Membr Sci 40:199–217CrossRefGoogle Scholar
  9. Hong S, Elimelech M (1977) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132(2):159–181CrossRefGoogle Scholar
  10. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705–013708CrossRefGoogle Scholar
  11. Juby GJG (1992) Membrane desalination of service water from gold mines. J SA Inst Miner Metall 9:65–69Google Scholar
  12. Khulbe KC, Feng CY, Matsuura TS (2008) Synthetic Polymeric Membranes Characterization by Atomic Force Microscopy. Springer-Verlag, BerlinGoogle Scholar
  13. Lin SW, Sicairos SP, Navarro RMF (2007) Preparation, characterization and salt rejection of negatively charged polyamide nanofiltration membranes. J Mex Chem Soc 51:129–135Google Scholar
  14. Manttari M, Puro L, Nuortila-Jokinen J, Nyström M (2000) Fouling effects of polysaccharides and humic acid in nanofiltration. J Membr Sci 165:1–17CrossRefGoogle Scholar
  15. Morgan BE, Loewenthal RE, Lahav O (2001) Fundamental study of a one-step ambient temperature ferrite process for treatment of acid mine drainage waters. Water SA 27:277–282Google Scholar
  16. Mortazavi S, Chaulk J (2012) Treatment of acid mine drainage streams using membrane separation. In: Price WA, Hogan C, Tremblay G (eds), Proc, 9th International Conf on Acid Rock Drainage, Ottawa, ON, CanadaGoogle Scholar
  17. Nkwonta PI (2010) Roughing filters: an alternative passive pre-treatment of coal mine water in South Africa. MS thesis, Dept of Civil Eng, Tshwane Univ of TechnologyGoogle Scholar
  18. Pondja EA, Persson KM, Matsinhe NP (2014) A survey of experience gained from the treatment of coal mine wastewater. J Water Resource Prot 14(6):1646–1658CrossRefGoogle Scholar
  19. Reiss CR (2005) Mechanisms of nanofilter fouling and treatment alternatives for surface water supplies. PhD thesis, Dept of Civil and Environ Eng, Univ of Central Florida Orlando, FL, pp 32–33Google Scholar
  20. Rieger A, Steinberger P, Pelz W, Haseneder R, Härtel G (2009) Mine Water treatment by membrane filtration processes-experimental investigation on applicability. Desalin Water Treat 6:54–60CrossRefGoogle Scholar
  21. Weis A, Bird MR, Nyström M (2003) The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles. J Membr Sci 216:67–79CrossRefGoogle Scholar
  22. Xia S, Dong B, Zhang Q, Xu B, Gao N, Causseranda C (2006) Study of arsenic removal by nanofiltration and its application in China. Desalin 204:374–379CrossRefGoogle Scholar
  23. Yuan W, Zydney AL (2000) Humic acid fouling during ultrafiltration. Environ Sci Technol 34:5043–5050CrossRefGoogle Scholar
  24. Zinck JM, Griffith WF (2000) An assessment of HDS-type lime treatment processes-efficiency and environmental impact. Proc, 5th International Conf on Acid Rock Drainage, Soc of Mining. Metallurgy Exploration 1:1027–1034Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Oluranti Agboola
    • 1
    • 2
  • Touhami Mokrani
    • 1
  • Emmanuel Rotimi Sadiku
    • 2
  • Andrei Kolesnikov
    • 2
  • Olubiyi Isola Olukunle
    • 2
  • Johannes Phillippus Maree
    • 3
  1. 1.Department of Civil and Chemical EngineeringUniversity of South AfricaJohannesburgSouth Africa
  2. 2.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa
  3. 3.Phillert TrustPretoriaSouth Africa

Personalised recommendations