Advertisement

Mine Water and the Environment

, Volume 33, Issue 1, pp 54–65 | Cite as

Prediction of Acid Mine Drainage: Importance of Mineralogy and the Test Protocols for Static and Kinetic Tests

  • Hassan BouzahzahEmail author
  • Mostafa Benzaazoua
  • Bruno Bussiere
  • Benoit Plante
Technical Article

Abstract

Static tests, which compare the acid-generating potential and acid-neutralizing potential for a given mine waste (tailings or waste rocks), are characterized by a wide uncertainty zone in which it is impossible to accurately predict the acid-generating potential (AGP). Then, to better assess long-term AGP, kinetic tests are usually performed to provide more information about the reaction rates of the acid-generating and acid-neutralizing minerals. The present work compares the classic Sobek static test with three mineralogical static tests to assess the importance of sample mineralogy in acid mine drainage (AMD) prediction. We also investigated how experimental procedures related to static tests can influence prediction results. We used three synthetic tailings samples made by mixing well-characterized pure minerals in calibrated proportions. Although basically different in their principles and procedures, the modified Sobek and mineralogical static tests gave similar results. These AGP predictions were then validated by the use of a kinetic test. The kinetic test protocol was also modified in this study and the results obtained correlated well with the static test results, in contrast to the standard kinetic test protocol. The present work highlights the limitations of static and kinetic test procedures, and provides recommendations for a better use of these tests for more reliable AMD prediction.

Keywords

Acid mine drainage prediction ABA static test Kinetic test Mineralogy 

Vorhersage der Bildung von Sauren Grubenabwässern: Die Bedeutung der Mineralogie bei Statischen und Kinetischen Versuchen

Zusammenfassung

Statische Versuche, welche das säurebildende und -neutralisierende Potential von Bergbauabfällen bestimmen, weisen z. T. so große Unsicherheitsbereiche auf, dass das exakte säurebildende Potential (acid-generation potential, AGP) sehr schwer ermittelbar ist. Um das langzeitlich wirksame AGP zu bestimmen, werden häufig kinetische Test durchgeführt, um so die Reaktionsraten der säurebildenden und neutralisierenden Minerale zu ermitteln. In dieser Arbeit wird der klassische statische Versuch nach Sobek mit drei weiteren statischen Versuch verglichen, um die Bedeutung der mineralogischen Zusammensetzung der Proben bei der Vorhersage der Bildung von sauren Grubenabwässern zu untersuchen. Gleichzeitig wird betrachtet, wie sich die Versuchsbedingungen auf die Resultate auswirken. Hierzu werden drei künstliche hergestellte Mischproben verwendet, welche aus gut charakterisierten reinen Mineralen bestehen. Obwohl sich sämtliche Testvarianten hinsichtlich ihrer Grundlagen und Versuchsverläufe unterscheiden, führen sie zu vergleichbaren Ergebnissen. Die auf dieser Grundlage ermittelten AGP-Prognoseergebnisse wurden im Anschluss mit Hilfe eines kinetischen Versuchs validiert. Im Gegensatz zu standartgemäßen Versuchsverlauf wurde der kinetische Test verändert, was jedoch die Vergleichbarkeit mit den statischen Versuchen erhöht. In der vorliegenden Arbeit werden die Grenzen von statischen und kinetischen Versuchsanwendungen aufgezeigt und Hinweise zur Verbesserung der Versuche abgeleitet. Dies führt zu vertrauenswürdigeren Ergebnissen bei der Vorhersage der Bildung von sauren Grubenabwässern.

Predicción del Drenaje ácido de Minas: Importancia de la Mineralogía y de los Protocolos para los Ensayos Estáticos y Cinéticos

Resúmen

Los ensayos estáticos que compararan la capacidad de generación de ácido y la capacidad de neutralizarlo para cierto residuo minero (colas o rocas residuales) están caracterizados por una amplia zona de incertidumbre en la cual es imposible predecir adecuadamente la capacidad de generación de ácido (AGP). Luego, para un mejor relevamiento del AGP a largo plazo, los ensayos cinéticos se realizan usualmente para dar más información sobre las velocidades de las reacciones de generación y neutralización de la acidez que presentan los minerales. Este trabajo compara el ensayo estático clásico de Sobek con tres ensayos estáticos mineralógicos para relevar la importancia de la mineralogía de la muestra en la predicción de AMD. También investigamos cómo los procedimientos experimentales de los ensayos estáticos pueden influir en la predicción de los resultados. Usamos 3 muestras de colas sintéticas preparadas mezclando en proporciones definidas minerales puros bien caracterizados. Aunque difieren en sus principios y procedimientos, los ensayos estáticos mineralógicos y los estudios modificados de Sobek dan resultados similares. Estas predicciones AGP fueron luego validadas utilizando un ensayo cinético. El protocolo del ensayo cinético también fue modificado y los resultados obtenidos correlacionaron bien con los resultados del ensayo estático, en contraste con el protocolo estándar del ensayo cinético. Este trabajo clarifica las limitaciones de los procedimientos de los ensayos estáticos y cinéticos y aporta recomendaciones para un mejor uso de estos ensayos para una más exacta predicción del AMD.

酸性矿井水预测:矿物学及静、动态试验方法研究

摘要

静态试验用以预测某给定废矿石(尾矿或矸石)的产酸和酸中和潜力,试验方法具有不确定性,难以准确预测废矿石的产酸潜力(AGP)。动力学试验能够为更好地评价废矿石长期产酸潜力提供更多的产酸和酸中和反应速率信息。本文对比了经典索贝克静态试验(classic Sobek static test)和3种矿物学静态试验(mineralogical static tests)结果,以评价在酸性矿井水预测中样本矿物性质的影响。同时,研究了静态试验过程如何影响产酸预测结果。3种人工合成尾矿由纯矿物按标准比例混合而成。虽然改进的索贝克(modified Sobek)和矿物学静态试验(mineralogical static tests)原理和步骤不同,但它们的试验结果相似。动态试验验证了产酸潜力(AGP)预测的可靠性。本研究中的动态试验也为改进试验,动态试验结果与静态试验结果具有很好的一致性。文章突出了静态和动态试验方法的局限性,提出了合理利用这此试验方法进行酸性矿井水预测的建议。.

Notes

Acknowledgments

This work was supported with funds from the Canada Research Chair on Integrated Mine Waste Management and the NSERC Industrial chair Polytechnique-UQAT on mining environment. Some financial support was also provided by the UQAT foundation (FUQAT) and the International Research Chairs Initiative (IDRC). The authors are also grateful to the “Unité de Recherche et de Service en Technologie Minérale” personnel for their technical assistance.

Supplementary material

10230_2013_249_MOESM1_ESM.docx (462 kb)
Supplementary material 1 (DOCX 462 kb)

References

  1. Adam K, Kourtis A, Gazea B, Kontopoulos A (1997) Evaluation of static tests used to predict the potential for acid drainage generation at sulfide mine sites. Trans Inst Min Metall A 106:A1–A8Google Scholar
  2. Aubertin M, Bussiere B, Bernier L (2002) Environnement et gestion des résidus miniers. CD, Les Editions de l’Ecole Polytechnique de Montréal, CanadaGoogle Scholar
  3. Barazzuol L, Sexsmith K (2012) Application of an advanced mineralogical technique: sulphide mineral availability and humidity cell interpretations based on MLA analysis. In: Proceedings of the 9th international conference on acid rock drainage (ICARD), Ottawa, ON, CanadaGoogle Scholar
  4. Benzaazoua M, Bussier B, Dagenais AM (2001) Comparison of kinetic tests for sulfide mine tailings. In: Proceedings of the tailings and mine waste 01. Balkema, Rotterdam, the Netherlands, pp 263–272Google Scholar
  5. Benzaazoua M, Bussiere B, Dagenais AM, Archambault M (2004) Kinetic test comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46(8):1086–1101CrossRefGoogle Scholar
  6. Blaskovich R, Klein B, Brienne S, Beckie R, Mayer K, Aranda C, Haupt C (2012) quantitative mineralogy to assess waste rock weathering at the antamina mine. In: Proceedings of the 9th ICARD, Ottawa, ON, CanadaGoogle Scholar
  7. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The Geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds) Ch 9.05, Treatise on geochemistry. Elsevier, Oxford, pp 149–204. ISBN: 0-08-043751-6Google Scholar
  8. Bouzahzah H (2006) Prédiction du potentiel du drainage minier acide des résidus sulfurés. MS thesis, University of Liege, BelgiumGoogle Scholar
  9. Bouzahzah H, Califice A, Mermillod-blondin R, Benzaazoua M, Pirard E (2008) Modal analysis of mineralogical blends using optical image analysis versus X-ray diffraction and ICP. In: Proceedings of the 9th international congress for applied mineralogy (ICAM), Brisbane, Australia, pp 673–679Google Scholar
  10. Bouzahzah H, Benzaazoua M, Bussière B (2010) A modified protocol of the ASTM normalized humidity cell test as laboratory weathering method of concentrator tailings. In: Proceedings of the international mine water assocition, mine water and innovative thinking, Sydney, NS, Canada, pp 15–18Google Scholar
  11. Bouzahzah H, Benzaazoua M, Bussière B (2012) Modification and automation of the humidity cell test protocol to favor tailings reactivity. In: Proceedings of the 9th ICARD, Ottawa, ON, CanadaGoogle Scholar
  12. Bouzahzah H, Benzaazoua M, Bussière B (2013) Acid-generating potential calculation using mineralogical static test: modification of the Paktunc equation. In: Proceedings of the 23rd world mining congress, Montreal, QC, CanadaGoogle Scholar
  13. Bussière B (2007) Colloquium 2004: hydro-geotechnical properties of hard rock tailings from metal mines and emerging geo-environmental disposal approaches. Can Geotech J 44(9):1019–1052CrossRefGoogle Scholar
  14. Cruz R, Bertrand V, Monroy M, Gonzalez I (2001) Effect of sulphide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach. Appl Geochem 16:803–819CrossRefGoogle Scholar
  15. Demers I, Bussiere B, Mbonimpa M, Benzaazoua M (2009) Oxygen diffusion and consumption in low-sulphide tailings covers. Can Geotech J 46:454–469CrossRefGoogle Scholar
  16. Duncan DW, Bruynesteyn A (1979) Determination of acid production potential of waste materials. In: Proceedings of the metallurgy soc AIME, paper A79-29Google Scholar
  17. Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84:310–320CrossRefGoogle Scholar
  18. Ferguson KD, Morin KA (1991). The prediction of acid rock drainage—lessons from the data base. In: Proceedings of the 2nd ICARD, vol 3. Montréal, QC, Canada, pp 83–106Google Scholar
  19. Frostad SR, Price WA, Bent H (2003) Operational NP determination—accounting for iron manganese carbonates and developing a site-specific fizz rating. In: Spiers G, Beckett P, Conroy H (eds) Mining and the environment, Sudbury 2003. Laurentian University, Sudbury, pp 231–237Google Scholar
  20. Furrer G, Stumm W (1986) The coordination chemistry of weathering I. Dissolution kinetics of Al2O3 and BeO. Geochim Cosmochim Acta 50:1847–1860CrossRefGoogle Scholar
  21. Gosselin M, Aubertin M, Mbonimpa M (2007) Évaluation de l’effet du degré de saturation sur la diffusion et la consommation d’oxygène dans les résidus miniers sulfureux. In: Proceedings of the 60th CGC and 8th Joint CGS, pp 1431–1438Google Scholar
  22. Gu Y (2003) Automated scanning electron microscope based mineral liberation analysis, an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng 2(1):33–41Google Scholar
  23. Hamdi J (2012) Mesures expérimentales des concentrations en oxygène sur le terrain et modélisations numériques pour évaluer le flux de diffusion dans la couvertures du site minier LTA. Mémoire de maîtrise en Sciences appliquées (Génie Minéral), École Polytechnique de Montréal, QC, CanadaGoogle Scholar
  24. Jambor JL, Dutrizac JE, Raudsepp M, Groat LA (2003) Effect of peroxide on neutralization-potential values of siderite and other carbonate minerals. J Environ Qual 32:2373–2378CrossRefGoogle Scholar
  25. Jambor JL, JE Dutrizac, Raudsepp M (2007) Measured and computed neutralization potential from static tests of diverse rock types. Environ Geol 52:1173–1185CrossRefGoogle Scholar
  26. Kargbo DM, He J (2004) A simple accelerated rock weathering method to predict acid generation kinetics. Environ Geol 46:775–783CrossRefGoogle Scholar
  27. Kwong YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND Report 1.32.1, CANMET, Ottawa, ON, CanadaGoogle Scholar
  28. Kwong YTJ, Ferguson KD (1997) Mineralogical changes during NP determinations and their implications. In: Proceedings 4th ICARD, Vancouver, BC, Canada, pp 435–447Google Scholar
  29. Lapakko K (1994) Evaluation of neutralization potential determination for metal waste and a proposed alternative. In: Proceedings of the international land reclamation and mine drainage conference and 3rd ICARD, Pittsburgh, vol 1. PA, USA, pp 129–137Google Scholar
  30. Lastra R (2007) Seven practical application cases of liberation analysis. Int J Miner Process 84:337–347CrossRefGoogle Scholar
  31. Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32:100–106CrossRefGoogle Scholar
  32. Lawrence RW, Wang Y (1996) Determination of neutralizing potential for acid rock drainage prediction. MEND/NEDEM report 1.16.3, Canadian Centre for Mineral and Energy Technology, Ottawa, ON, CanadaGoogle Scholar
  33. Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. In: Proceedings of the 4th ICARD, vol 1. Vancouver, BC, Canada, pp 449–464Google Scholar
  34. Lawrence RW, Poling GW, Marchant PB (1989) Investigation of predictive techniques for acid mine drainage. MEND/NEDEM report 1.16.1a, Canadian Centre for Mineral and Energy, Ottawa, ON, CanadaGoogle Scholar
  35. Li G, Bernier LR (1999) Contributions of carbonates and silicates to neutralization observed in laboratory tests and their field implications. In: Proceedings of the mining and the environment conference, vol 1. Sudbury, ON, Canada, pp 69–79Google Scholar
  36. Mbonimpa M, Aubertin M, Aachib M, Bussière B (2003) Diffusion and consumption of oxygen in unsaturated cover materials. Can Geotech J 40(5):916–932CrossRefGoogle Scholar
  37. Meek FA (1981) Development of a procedure to accurately account for the presence of siderite during mining overburden analysis. In: Proceedings of the 2nd annual west virginia surface mine drainage task force symp, West Virginia University, Morgantown, WV, USAGoogle Scholar
  38. Merkus HG (2009) Particle size measurements fundamentals, practice, quality. Powder Technol Ser, vol 17. doi: 10.1007/978-1-4020-9016-5
  39. Miller SD, Jeffery JJ, Wong JWC (1991) Use and misuse of the acid base account for “AMD” prediction. In: Proceedings of the 2nd ICARD, vol 3. Montreal, QC, Canada, pp 489–506Google Scholar
  40. Morin KA, Hutt NM (1994) Observed preferential depletion of neutralization potential over sulfide minerals in kinetic tests: site-specific criteria for safe NP/AP ratios. In: Proceedings of the international land reclamation and mine drainage conference and the 3rd ICARD, Pittsburgh, PA, USA, pp 148–156Google Scholar
  41. Nordstrom KD, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. Rev Econ Geol 6A:133–160Google Scholar
  42. Paktunc AD (1999) Characterization of mine wastes for prediction of acid mine drainage. In: Azcue JM (ed) Environmental impacts of mining activities. Springer, New York, NY, pp 19–40CrossRefGoogle Scholar
  43. Petruk W (2000) Applied mineralogy in the mining industry. Elsevier Science BV, AmsterdamGoogle Scholar
  44. Plante B, Bussière B, Benzaazoua M (2012) Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J Geochem Explor 114:57–69CrossRefGoogle Scholar
  45. Raudsepp M, Pani E (2003) Application of Rietveld analysis to environmental mineralogy. In: Jambor DL, Blowes DW, Ritchie AIM (eds.), Environmental aspects of mine wastes, short course. Mineralogical Assoc of Canada, vol 3. Nepean, Ontario, pp 165–180Google Scholar
  46. Rietveld HM (1993) The Rietveld method. Young RA (ed), Oxford Univ Press, Oxford, UKGoogle Scholar
  47. Skousen J, Renton J, Brown H, Evans P, Leavitt K, Brady B, Cohen L, Ziemkiewicz P (1997) Neutralization potential of overburden samples containing siderite. J Environ Qual 26:673–681CrossRefGoogle Scholar
  48. Skousen J, Simmons J, McDonald LM, Ziemkiewicz P (2002) Acid–base accounting to predict post-mining drainage quality on surface mines. J Environ Qual 31:2034–2044CrossRefGoogle Scholar
  49. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. US Govt Printing Office, Washington, DCGoogle Scholar
  50. Sverdrup H (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund, SwedenGoogle Scholar
  51. Taylor JC, Hinczak I (2001) Rietveld made easy: a practical guide to the understanding of the method and successful phase quantifications. Sietronics Pty Ltd, BelconnenGoogle Scholar
  52. Villeneuve M, Bussière B, Benzaazoua M, Aubertin M, Monroy M (2003) The influence of kinetic test type on geochemical response of low acid generating potential tailings. In: Proceedings of the 10th International Conference on Tailings and Mine Waste, A Balkema Publ, Rotterdam, the Netherlands, pp 269–279Google Scholar
  53. Villeneuve M, Bussière B, Benzaazoua M, Aubertin M (2009) Assessment of interpretation methods for kinetic tests performed on tailings having a low acid generating potential. In: Proceedings of the 8th ICARD, Skellefteå, SwedenGoogle Scholar
  54. Weber PA, Thomas JE, Skinner WM, Smart RSC (2004) Improved acid neutralization capacity assessment of iron carbonates by titration and theoretical calculation. Appl Geochem 19:687–694CrossRefGoogle Scholar
  55. Weber PA, Thomas JE, Skinner WM, Smart RStC (2005) A methodology to determine the acid–neutralization capacity of rock samples. Can Mineral 43:1183–1192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hassan Bouzahzah
    • 1
    Email author
  • Mostafa Benzaazoua
    • 1
  • Bruno Bussiere
    • 1
  • Benoit Plante
    • 1
  1. 1.Univ du Québec en Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada

Personalised recommendations