Advertisement

Mine Water and the Environment

, Volume 32, Issue 2, pp 152–167 | Cite as

Assessment of Phosphate Limestone Wastes as a Component of a Store-and-Release Cover in a Semiarid Climate

  • Bruno BosséEmail author
  • Bruno Bussière
  • Rachid Hakkou
  • Abdelkabir Maqsoud
  • Mostafa Benzaazoua
Technical Article

Abstract

In a semiarid climate where the annual precipitation is low and the evaporation rate is high, contaminated drainage production from mine tailings can be controlled by reducing water infiltration. Store-and-release covers that use capillary barrier effects can prevent water percolation by storage and evaporation (or evapotranspiration) during wet and dry climatic periods. In Morocco, sedimentary phosphate mines are located close to contaminated sites, which includes the abandoned Kettara mine. This mine site generates highly contaminated acid rock drainage (ARD) with negative impacts on its surrounding area. In order to validate if phosphate mine wastes can be used as cover material to reclaim the Kettara site, instrumented test columns were exposed to field conditions and tested for a period of one and a half years. Under natural conditions, more than 94 % of the total net infiltration (246.5 mm) was released to the atmosphere by evaporation. Preliminary tests showed that the studied scenarios can limit deep water infiltration even during extreme simulated rainfall (155 mm/d) and could be used to efficiently control contaminated drainage in a semiarid climate.

Keywords

Acid rock drainage Store-and-release cover Kettara mine site Mine site reclamation 

„Bewertung von Phosphat-Kalkstein-Abraum als Bestandteil einer Speicher-Verdunstungs-Abdeckung Unter Semiariden Bedingungen”

In semiariden Klimaten, gekennzeichnet durch geringe Jahresniederschläge und hohe Verdunstungsraten, kann die Bildung kontaminierten Sickerwassers aus bergbaulichen Rückständen durch Verringerung der Infiltrationsrate beeinflusst werden. Nach dem Speicher-Verdunstungs-Prinzip wirkende und Kapillarsperreneffekte nutzende Abdeckungen können die Wasserperkolation durch Wasserspeicherung während Nassperioden und anschließender Verdunstung in Trockenperioden unterbinden. In Marokko befinden sich sedimentäre Phosphatgruben in enger Nachbarschaft zu Altstandorten, einer davon ist die auflässige Kettara-Mine. Dieser Bergwerksstandort produziert stark kontaminierte saure Grubenwässer (ARD), die das Umland negativ beeinflussen. Um zu untersuchen, inwieweit sich Phosphat-Abraum als Abdeckmaterial zur Sanierung des Standorts Kettara eignet, wurden instrumentierte Testkolonnen unter Feldbedingungen über einen Zeitraum von eineinhalb Jahre betrieben. Unter natürlichen Bedingungen verdunsteten mehr als 94 % der Gesamtnettoinfiltration (246,5 mm). Vorläufige Tests belegten, dass die untersuchten Varianten die Tiefenversickerung selbst während simulierter Extremniederschläge (155 mm/Tag) verringern und dass sie unter semiariden Bedingungen wirksam zur Minimierung kontaminierter Sickerwässer eingesetzt werden können.

Relevamiento de residuos fosfatados como un componente para la cobertura del almacenamiento en un clima semiárido

Resumen

En un clima semiárido donde la precipitación anual es baja y la velocidad de evaporación es alta, la producción de drenaje contaminado desde las colas mineras puede ser controlada por reducción de la infiltración de agua. Coberturas de almacenamiento que usan efectos capilares de barrera pueden prevenir la percolación de agua por almacenamiento y evaporación (o evapotranspiración) durante los períodos de clima húmedo y seco. En Marruecos, las minas de fosfato sedimentario están localizadas cerca de los sitios contaminados que incluyen la mina abandonada de Kettara. Este sitio minero genera drenaje ácido de roca (ARD) altamente contaminado con impacto negativo sobre el área circundante. Para saber si los residuos fosfatados de la mina pueden ser usados como material de cubrimiento para recuperar el sitio Kettara, se expusieron columnas a las condiciones de campo y se testearon durante un período de 1,5 años. Bajo condiciones naturales, más del 94 % de la infiltración neta (246,5 mm) fue liberado a la atmósfera por evaporación. Los estudios preliminares mostraron que los escenarios estudiados pueden limitar la infiltración profunda de agua aún durante simuladas lluvias extremas (155 mm/d) y podría ser usada para un eficiente control drenaje contaminado en un clima semiárido.

抽象

半干旱地区年降水量低而蒸发量大,可以通过减小降水入渗的方法控制尾矿污水污染。储存-释放型腾发覆盖层(store-and-release cover)利用丰、枯季的蒸腾发作用形成毛细屏障而阻止污水下渗。在摩洛哥,沉积成因磷酸盐矿物距污染区较近,废弃的凯塔拉(Kettara)矿位于该污染区内。污染区内重度污染酸性废水(ARD)已经对周围环境造成不良环境影响。为研究磷酸盐废矿石作为凯塔拉(Kettara)矿复垦盖层材料可行性,进行为期一年半野外柱体试验。在自然条件下,94 %总净降水入渗量通过蒸发返回大气层。基础试验表明,即使在强降雨(模拟雨强155 mm/d)条件下,试验条件仍能有效防止盖层深层渗漏,有效控制半干旱区尾矿污水污染。

Notes

Acknowledgments

Financial support for this study was provided through the International Research Chairs Initiative, a program funded by the International Development Research Centre (IDRC) and the Canada Research Chairs program. Phosphate limestone wastes were kindly made available by the OCP group (Office Chérifien des Phosphates) and meteorological data were provided by the International Joint Laboratory LMI TREMA and SUDMED project involving the collaboration of CESBIO (Centre d’Etudes Spatiales de la Biosphère, France) the Cadi Ayyad University (Morocco), the Agriculture Office (Office de Mise en Valeur Agricole), and IRD (Institut de Recherche pour le Développement, France). Finally, the authors thank the anonymous reviewers for their constructive comments.

References

  1. Akindunni FF, Gillham RW, Nicholson RV (1991) Numerical simulations to investigate moisture-retention characteristics in the design of oxygen-limiting covers for reactive mine tailings. Can Geotech J 28:446–451CrossRefGoogle Scholar
  2. Albright WH, Benson CH, Gee GW, Roesler AC, Abichou T, Apiwantragoon P, Lyles BF, Rock SA (2004) Field water balance of landfill final covers. J Environ Qual 33(6):2317–2332CrossRefGoogle Scholar
  3. Albright WH, Benson CH, Waugh WJ (2010) Water balance covers for waste containment. Principles and Practice. ASCE Press, Reston, VACrossRefGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper 56, http://www.kimberly.uidaho.edu/ref-et/fao56.pdf
  5. ASTM (2002) D 5856-95: Standard test methods for measurement of hydraulic conductivity porous materials using a rigid-wall, compaction-mold permeameter. Annual Book of ASTM Standards Vol 04.08Google Scholar
  6. ASTM (2008) D 6836-02: Standard test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and\or centrifuge. Annual Book of ASTM Standards Vol 04.08Google Scholar
  7. ASTM (2009) D 6913-04: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Annual Book of ASTM Standards Vol 04.09Google Scholar
  8. ASTM (2010) D 4318-10: Standard test methods for liquid limit, plastic limit, and plasticity index soils. Annual Book of ASTM Standards Vol 04.08Google Scholar
  9. Aubertin M, Mbonimpa M, Bussière B, Chapuis RP (2003) A model to predict the water retention curve from basic geotechnical properties. Can Geotech J 40:1104–1122CrossRefGoogle Scholar
  10. Aubertin M, Cifuentes E, Apithy SA, Bussière B, Molson J, Chapuis RP (2009) Analyses of water diversion along inclined covers with capillary barrier effects. Can Geotech J 46:1146–1164CrossRefGoogle Scholar
  11. Barnswell KD, Dwyer DF (2011) Assessing the performance of evapotranspiration covers for municipal solid waste landfills in Northwestern Ohio. J Env Eng ASCE 137(4):301–305CrossRefGoogle Scholar
  12. Benson CH, Abichou T, Albright WH, Gee GW, Roesler AC (2001) Field evaluation of alternative earthen final covers. Int J Phytorem 3:1–21CrossRefGoogle Scholar
  13. Benson CH, Albright WH, Roesler AC, Abichou T (2002) Evaluation of final cover performance: field data from the alternative cover assessment program (ACAP). Proc, WM’02 Conf, Tucson, AZ, USA, https://www.dri.edu/images/stories/research/programs/acap/acap-publications/8.pdf
  14. Benson CH, Sawangsuriya B, Trzebiatowski B, Albright WH (2007) Post-construction changes in the hydraulic properties of water balance cover soils. J Geotech Geoenv Eng 133(4):349–359CrossRefGoogle Scholar
  15. Bossé B (2013) Evaluation du comportement hydrogéologique d’un recouvrement « Store-and-Release » constitué de rejets calcaires phosphatés en climat semi-aride. PhD Diss, UQAT, Rouyn-Noranda, CanadaGoogle Scholar
  16. Bussière B, Aubertin M, Chapuis R (2003) The behaviour of inclined covers used as oxygen barriers. Can Geotech J 40(3):512–535CrossRefGoogle Scholar
  17. Bussière B, Aubertin M, Mbonimpa M, Molson JW, Chapuis RP (2007) Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials. Can Geotech J 44:245–265CrossRefGoogle Scholar
  18. Chin KB, Leong EC, Rahardjo H (2010) A simplified method to estimate the soil-water characteristic curve. Can Geotech J 47:1382–1400CrossRefGoogle Scholar
  19. Cooper J, Lombardi R, Boardman D, Carliell-Marquet C (2011) The future distribution and production of global phosphate rock reserves. Resour, Conser and Recyc 57:78–86CrossRefGoogle Scholar
  20. Daniel DE, Koerner RM (2007) Waste containment facilities: guidance for construction quality assurance and construction quality control of line and cover system, 2nd edn. ASCE Press, Reston, VACrossRefGoogle Scholar
  21. Davis DD, Horton R, Heitman JL, Ren TS (2009) Wettability and hysteresis effects on water sorption in relatively dry soil. Soil Sci Soc Am J 73:1947–1951CrossRefGoogle Scholar
  22. Decagon (2007) ECH2O-TE/EC-TM water content, EC and temperature sensors. Operator’s manual, Decagon Devices Inc, Pullman WA, USAGoogle Scholar
  23. Decagon (2009) Dielectric water potential sensor. Operator’s manual, version 3, Decagon Devices Inc, Pullman WA, USAGoogle Scholar
  24. Dwyer SF (2003) Water balance measurements and computer simulations of landfill covers. PhD Diss, Univ of New Mexico, Albuquerque, NM, USAGoogle Scholar
  25. El Khalil H, El Hamiani O, Bitton G, Ouazzani N, Bourlarbah A (2008) Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Env Monit Assess 136:147–160CrossRefGoogle Scholar
  26. EPA (2011) Fact sheet on evapotranspiration cover systems for waste containment. US Environmental Protection Agency, Washington DC, USA, http://www.epa.gov/tio/download/remed/epa542f11001.pdf
  27. EPA (2012) Evapotranspiration covers. Technology innovation and fields services division. US Environmental Protection Agency, Washington DC, USA, http://www.clu-in.org/products/evap/
  28. Fredlund DG, Rahardjo H (1993) Soil Mechanics for Unsaturated Soils. Wiley, NYC, NYCrossRefGoogle Scholar
  29. Gee GW, Benson CH, Albright WH (2006) Comment on “evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA”. Vadose Zone J 5:809–812CrossRefGoogle Scholar
  30. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Nat Bur Stan 81A(1):89–96CrossRefGoogle Scholar
  31. Gumbel EJ (1958) Statistics of Extremes. Columbia Univ Press, NYC, NYGoogle Scholar
  32. Haines WB (1930) Studies in the physical properties of soil: the hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agri Sci 20:97–116CrossRefGoogle Scholar
  33. Hakkou R, Benzaazoua M, Bussière B (2008a) Acid mine drainage at the abandoned Kettara mine (Morocco): 1 environmental characterization. Mine Water Environ 27:145–159CrossRefGoogle Scholar
  34. Hakkou R, Benzaazoua M, Bussière B (2008b) Acid mine drainage at the abandoned Kettara mine (Morocco): 2 mine waste geochemical behavior. Mine Water Environ 27:160–170CrossRefGoogle Scholar
  35. Hakkou R, Benzaazoua M, Bussière B (2009) Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water Environ 28(3):206–218CrossRefGoogle Scholar
  36. Hauser VL (2008) Evapotranspiration Covers for Landfills and Waste Sites. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  37. Haverkamp R, Reggiani P, Ross PJ, Parlange JY (2002) Soil water hysteresis prediction model based on theory and geometric scaling. Geophys Monogr 129:213–246CrossRefGoogle Scholar
  38. Hershfield DM (1965) Method for estimating probable maximum rainfall. J of the Am Waterworks Ass 57:965–972Google Scholar
  39. Khire MV, Benson CH, Bosscher PJ (1999) Field data from a capillary barrier and model predictions with UNSAT-H. J Geotech and Geoenv Eng 125(6):518–527CrossRefGoogle Scholar
  40. Khire MV, Benson CH, Bosscher PJ (2000) Capillary barriers: design variables and water balance. J Geotech and Geoenv Eng 126:695–708CrossRefGoogle Scholar
  41. Kizito F, Campbell CS, Campbell GS, Cobos DR, Teare BL, Carter B, Hopmans JW (2008) Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J Hydrol 352:367–378CrossRefGoogle Scholar
  42. Koutsoyiannis D (1999) A probabilistic view of Hershfield’s method for estimating probable maximum precipitation. Water Resour Res 35(4):1313–1322CrossRefGoogle Scholar
  43. Koutsoyiannis D (2003) On the appropriateness of the Gumbel distribution for modeling extreme rainfall. ESF LESC Exploratory Workshop, Hydro Risk, Bologna, Italy, http://itia.ntua.gr/getfile/590/1/documents/2003BolognaXtremrain.pdf
  44. Lghoul M, Teixidó T, Pena JA, Hakkou R, Kchikach A, Guérin R, Jaffal M, Zouhri L (2012) Electrical and seismic tomography used to image the structure of a tailings pond at the abandoned Kettara mine, Morocco. Mine Water Environ 31(1):53–61CrossRefGoogle Scholar
  45. Madalinski KL, Gratton DN, Weisman RJ (2003) Evapotranspiration covers: an innovative approach to remediate and close contaminated sites. Remediation 14(1):55–67CrossRefGoogle Scholar
  46. Malazian A, Hartsough P, Kamai T, Campbell GS, Cobos DR, Hopmans JW (2011) Evaluation of MPS-1 soil water potential sensor. J Hydrol 402:126–134CrossRefGoogle Scholar
  47. Maqsoud A, Bussière B, Aubertin M, Mbonimpa M (2012) Predicting hysteresis of the water retention curve from basic properties of granular soils. Geotech Geol Eng 30(5):1147–1159CrossRefGoogle Scholar
  48. Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20:235–259CrossRefGoogle Scholar
  49. McCarthy DF (2007) Essentials of soil mechanics and foundations: basic geotechnics, 7th edn. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  50. McGuire P, Andraski BJ, Archibald RE (2009) Case study of a full-scale evapotranspiration cover. J Geotech Geoenv Eng 135(3):316–332CrossRefGoogle Scholar
  51. Merkus HG (2009) Particle Size Measurements: Fundamentals, Practice, Quality. Springer Particle Technology Series 17, ISBN: 978-1-4020-9015-8Google Scholar
  52. Miller EE, Miller RD (1956) Physical theory for capillary flow phenomena. J Appl Phys 27:324–332CrossRefGoogle Scholar
  53. Morel-Seytoux H (1992) L’effet de barrière capillaire à l’interface de deux couches de sol aux propriétés fort contrastées. Hydrol Continent 7(2):117–128Google Scholar
  54. Morris CE, Stormont JC (1997) Capillary barriers and subtitle D covers: estimating equivalency. J Env Eng 123(1):3–10CrossRefGoogle Scholar
  55. Mualem Y, Beriozkin A (2009) General scaling rules of the hysteretic water retention function based on Mualem’s domain theory. Eur J Soil Sci 60:652–661CrossRefGoogle Scholar
  56. Nicholson RV, Gillham RW, Cherry JA, Reardon EJ (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Can Geotech J 26:1–18CrossRefGoogle Scholar
  57. Nyhan JW (2005) Seven-year water balance study of an evapotranspiration landfill cover varying in slope for semiarid regions. Vadose Zone J 4:466–480CrossRefGoogle Scholar
  58. O’Kane M, Porterfield D, Endersby M, Haug MD (1998) The design and implementation of the field test plots at BHP Iron Ore, Mt Whaleback—a cover system for an arid climate. Preprint 98–70, SME, Littleton, CO, USAGoogle Scholar
  59. O’Kane M, Porterfield D, Weir A, Watkins L (2000) Cover system performance in a semi-arid climate on horizontal and slope waste rock surfaces. Proc, International Conf on Acid Rock Drainage (ICARD) 2:1309–1318, Denver, CO, USA, ISBN: 0-87335-182-7Google Scholar
  60. Papalexiou SM, Koutsoyiannis D (2006) A probabilistic approach to the concept of probable maximum precipitation. Adv Geosci 7:51–54CrossRefGoogle Scholar
  61. Poulovassilis A (1962) Hysteresis of pore water, an application of concept of independent domains. Soil Sci 93:405–412CrossRefGoogle Scholar
  62. Rock S, Myers B, Fiedler L (2012) Evapotranspiration (ET) Covers. Inter J of Phyto 14(S1):1–25CrossRefGoogle Scholar
  63. Ross B (1990) The diversion capacity of capillary barriers. Water Resour Res 26(10):2625–2629CrossRefGoogle Scholar
  64. Sanaa D, Zahraoui M, El Wartiti M, Jebrak M, Nahraoui FZ, Fadli D (2011) Environmental mining and sustainable development. Present Env Sustainable Development 5(2):17–21Google Scholar
  65. Scanlon BR, Reedy RC, Keese KE, Dwyer SF (2005) Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern. USA Vadose Zone J 4:55–71CrossRefGoogle Scholar
  66. Shackelford CD, Chang CK, Chiu TF (1994) The capillary barrier effect in unsaturated flow through soil barriers. Proc, 1st International Congr on Environmental Geotechnology, Edmonton, Canada, ISSMFE/CGS, pp 789–793Google Scholar
  67. Smesrud JK, Benson CH, Albright WH, Richards JH, Wright S, Israel T, Goodrich K (2012) Alternative cover design in Northern California. Inter J Phyto 14(1):76–93CrossRefGoogle Scholar
  68. Steenhuis TS, Parlange JY, Kung KJS (1991) Comment on “the diversion capacity of capillary barriers” by B Ross. Water Resources Res 27:2155–2156CrossRefGoogle Scholar
  69. Stormont JC (1997) Incorporating capillary barriers in surface cover systems. Proc, Landfill Capping in the Semi-arid West, Grand Teton National Park, WY, USA, pp 39–51Google Scholar
  70. Stormont JC, Anderson C (1999) Capillary barrier effect from underlying coarser layer. J Geotech Geoenv Eng 125(8):641–648CrossRefGoogle Scholar
  71. Stormont JC, Morris CE (1998) Method to estimate water storage capacity of capillary barriers. J of Geotech and Geoenv Eng 124(4):297–302CrossRefGoogle Scholar
  72. Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  73. Waugh WJ, Kastens MK, Sheader LRL, Benson CH, Albright WH, Mushovic PS (2008) Monitoring the performance of an alternative landfill cover at the Monticello, Utah, uranium mill tailings disposal site. Waste Management Conf, Phoenix, AZ, pp 24–28Google Scholar
  74. Wels C, Fortin S, Loudon S (2002) Assessment of store and release cover for Questa tailings facility, New Mexico. Proc, 9th International Conf on Tailings and Mine Waste, Vail, CO, USA, pp 459–468Google Scholar
  75. Williams DJ, Stolberg DJ, Currey NA (2006) Long-term monitoring of Kidston’s « Store/Release » cover system over potentially acid forming waste rock piles. Proc, 7th ICARD, St Louis, MO, USA, pp 26-30Google Scholar
  76. WMO (World Meteorological Organization) (1986) Manual for estimating of probable maximum precipitation. Operational hydrology report 1, 2nd edn, Publ 332, World Meteorological Org, Geneva, SwitzerlandGoogle Scholar
  77. Zhan G, Aubertin M, Mayer A, Burke H, McMullen J (2001) Capillary cover design for leach pad closure. Proc, SME Annual Mtg, Denver, CO, USA, pp 1–9Google Scholar
  78. Zhan G, Schafer W, Milczarek M, Myers K, Giraudo J, Espell R (2006) The evolution of evapotranspiration cover systems at Barrick Goldstrick Mines. 7th ICARD, St. Louis, MO, USA, pp 2585–2603Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bruno Bossé
    • 1
    • 2
    Email author
  • Bruno Bussière
    • 1
  • Rachid Hakkou
    • 2
    • 3
  • Abdelkabir Maqsoud
    • 1
  • Mostafa Benzaazoua
    • 1
    • 2
  1. 1.Research Institute on Mines and the EnvironmentUniv du Québec en Abitibi-Témiscamingue, 445 Boul. de l’UniversitéRouyn-Noranda, QuébecCanada
  2. 2.IDRC (Canada) Research Chair in Management and Stabilization of Mining and Industrial WastesUniv Cadi AyyadMarrakechMorocco
  3. 3.LCME, Faculté des Sciences et TechniquesUniv Cadi AyyadMarrakechMorocco

Personalised recommendations