Advertisement

Mine Water and the Environment

, Volume 31, Issue 4, pp 273–286 | Cite as

Capacity of Wood Ash Filters to Remove Iron from Acid Mine Drainage: Assessment of Retention Mechanism

  • Thomas GentyEmail author
  • Bruno Bussière
  • Mostafa Benzaazoua
  • Gérald J. Zagury
Technical Article

Abstract

Acid mine drainage (AMD) with high iron concentrations can be a major challenge for passive treatment systems, particularly when sulphate reducing passive bioreactors (SRPBs) are used. The capacity of wood ash filters to act as a polishing step after SRPB treatment of a high-iron AMD (4,000 mg L−1 of Fe) was assessed. Five columns (1.7 L) with different mixtures of wood combustion ash and sand were investigated for their potential to remove metals from an SRPB effluent over 122 days. These materials had a high specific surface area (between 46 and 159 m² g−1), high organic carbon contents (between 12 and 32 %), and a high paste pH (up to 12.2). The Freundlich isotherm model reflects the observed iron sorption behavior on the material surface. Column study results indicate that the wood ash decreased iron concentrations for more than 100 days below 10 mg L−1 (99 % iron removal), mainly due to iron hydroxide precipitation and sorption. The risk of system clogging was negligible since the saturated hydraulic conductivity remained stable, between 5.0 × 10−3 and 3.1 × 10−2 cm s−1. Between 44 and 52 % of the sulphate was also removed due to gypsum precipitation.

Keywords

Column tests Sorption Passive treatment Reuse of by-product 

Die Aufnahmefähigkeit von Holzaschefiltern zur Entfernung von Eisen aus saurem Grubenwasser: Beurteilung der Rückhaltemechanismen

Zusammenfassung

Saures Grubenwasser mit hohen Eisenkonzentrationen kann eine große Herausforderung für passive Aufbereitungssysteme sein, besonders dann wenn sulfatreduzierende passive Bioreaktoren (SRPB) eingesetzt werden. Die Kapazität von Holzaschefiltern zur abschließenden Verbesserung nach einer SRPB Behandlung von saurem Grubenwasser mit hohem Eisengehalt (4,000 mg L−1 Fe) wurde beurteilt. Fünf Säulen (1,7 L) mit unterschiedlichen Gemischen aus Holzkohleasche und Sand wurden über 122 Tage auf ihr Potenzial untersucht, Metalle aus dem Ablaufwasser eines SRPB zu entfernen. Diese vorgenannten Materialien hatten eine große spezifische Oberfläche (46–159 m² g−1), hohen organischen Kohlenstoffanteil (12–32 %) und einen hohen pH Wert (bis zu 12,2). Das Freundlich-Isotherme-Modell zeigt das beobachtete Eisensorptionsverhalten auf der Materialoberfläche. Weiterhin belegen die Ergebnisse des Säulenversuchs, dass die Holzasche die Eisenkonzentrationen über mehr als 100 Tage auf unter 10 mg L−1 reduziert hat (99% Eisenentfernung). Dies ist vor allem auf Eisenhydroxidausfällung und Sorption zurückzuführen. Die Gefahr der Systemverockerung war insgesamt vernachlässigbar, da die gesättigte hydraulische Leitfähigkeit stabil zwischen 5,0 × 10-3 und 3,1 × 10-2 cm s−1 blieb. 44 bis 52% des Sulfats wurden außerdem durch Gipsausfällung entfernt.

Capacidad de filtros de cenizas de madera para remover hierro de drenaje ácido de minas: análisis del mecanismo de retención

Resumen

El drenaje ácido de minas (AMD) con altas concentraciones de hierro suele ser el mayor desafío para sistemas de tratamiento pasivo, especialmente cuando se usan bio-reactores pasivos de reducción de sulfato (SRPBs). Se analizó la capacidad de los filtros de cenizas de madera para actuar como un paso final después del tratamiento SRPB de un AMD con alto contenido de hierro (4,000 mg L−1 of Fe). Cinco columnas (1,7 L) con diferentes mezclas de cenizas de combustión de madera y arena fueron estudiadas en cuanto a su potencial para la remoción de metales desde un efluente SRPB durante 122 días. Estos materiales tenían una gran área superficial (entre 46-159 m² g−1), alto contenido de carbón orgánico (entre 12 y 32%), y un alto pH (hasta 12,2). El modelo de Freundlich refleja el comportamiento de sorción del hierro sobre el material de superficie. Los resultados del estudio en columnas muestran que las cenizas de madera disminuyeron las concentraciones de hierro por debajo de 10 mg L−1 (99% de remoción de hierro), principalmente por precipitación de hidróxido de hierro y por sorción, por más de 100 días. El riesgo de atasco en el sistema fue despreciable debido a que la conductividad hidráulica permaneció estable entre 5,0×10-3 y 3,1×10-2 cm s−1. Porcentajes entre el 44 y el 52% del sulfato fueron también removidos por precipitación de yeso.

木灰过滤器去除酸性矿井水中铁离子能力:截留机理研究

抽象

酸性矿井水(AMD)中高浓度铁离子的存在是酸性矿井水被动处理(passive treatment),尤其是硫酸盐生物还原处理(SRPBs)面临的主要难题。富铁酸性矿井水(铁离子浓度高达4,000mg/L)在经SRPB处理之后,木灰过滤器的去铁过程成为完善酸性矿井水被动处理的最后环节。文章研究了五个装有不同木灰和沙子配比的试验圆柱(1.7升)经122天多的过滤作用去除SRPB处理液中金属污染物的能力。该试验材料具有高比表面积(46-159 m?/g)、高有机碳含量(12%-32%)和高pH值(高达12.2)等特征。Freundlich吸附等温曲线模型反映出试验材料对铁离子的表面吸附行为。圆柱试验结果表明,由于铁氢氧化物沉淀作用和吸附作用,木灰能够经100多天过滤作用将铁离子浓度降至10 mg/L以下(铁去除率达99%)。木灰过滤系统的饱和渗透系数稳定在5.0 ?10-3 和3.1 ?10-2 cm/s,可以忽略沉淀作用阻塞过滤器的风险。同时,该系统可通过石膏沉淀的形式去除44%-52% 硫酸盐。

Notes

Acknowledgments

This research was supported by the Canada Research Chair on Restoration of Abandoned Mine Sites and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Industrial NSERC—École Polytechnique—Université du Québec en Abitibi Témiscamingue Chair in Environment and Mine Wastes Management. The authors acknowledge gratefully the industrial and governmental partners of the industrial Chair for the funding of this study and Brian Coghlan from Wood Ash Industries Inc for graciously supplying wood ash.

Supplementary material

10230_2012_199_MOESM1_ESM.pdf (103 kb)
Supplementary material 1 (PDF 102 kb)
10230_2012_199_MOESM2_ESM.pdf (92 kb)
Supplementary material 2 (PDF 91 kb)
10230_2012_199_MOESM3_ESM.pdf (8 kb)
Supplementary material 3 (PDF 7 kb)
10230_2012_199_MOESM4_ESM.pdf (156 kb)
Supplementary material 4 (PDF 155 kb)
10230_2012_199_MOESM5_ESM.pdf (182 kb)
Supplementary material 5 (PDF 181 kb)

References

  1. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Eng Combust Sci 36:327–363. doi: 10.1016/j.pecs.2009.11.003 CrossRefGoogle Scholar
  2. Aitcin JC, Jolicoeur G, Mercier M (1983) Technologie des granulats. Les éditions Le Griffon d’Argile, Sainte-FoyGoogle Scholar
  3. Al-Degs Y, El-Barghouthi M, Issa A, Khraisheh M, Walker G (2006) Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40:45–2658. doi: 10.1016/j.watres.2006.05.018 CrossRefGoogle Scholar
  4. ASTM (1995a). Standard test method for pH of soils. In: annual book of ASTM standards, vol 04.08, section D4972-95a, Washington DC, pp 27–28Google Scholar
  5. ASTM (1995b) Standard test method for permeability of granular soils. Annual book of ASTM Standards, vol 04.08, section D, Washington DC, pp 2434–68Google Scholar
  6. Aubertin M, Bussière B, Bernier L (2002) Environnement et gestion des rejets miniers. Edition Presses Internationales Polytechnique, MontréalGoogle Scholar
  7. Blowes DW, Ptacek CJ (1994) System for treating contaminated groundwater. US Patent 5,362,394, Nov 8, 1994Google Scholar
  8. Champagne P, Van Geel P, Parker W (2005) A bench-scale assessment of a combined passive system to reduce concentrations of metals and sulphate in acid mine drainage. Mine Water Environ 24:124–133. doi: 10.1007/s10230-005-0083-1 CrossRefGoogle Scholar
  9. Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41:787–795. doi: 10.1139/T04-022 CrossRefGoogle Scholar
  10. Cheung CW, Porler JF, McKay G (2000) Elovich equation and modified second-order equations for sorption of cadmium ions onto bone char. J Chem Technol Biotechnol 75:963–970. doi: 10.1002/1097-4660(200011)75:11<963:AID-JCTB302>3.0.CO;2-Z CrossRefGoogle Scholar
  11. Costa MC, Martins M, Jesus C, Duarte JC (2008) Treatment of acid mine drainage by sulphate-reducing bacteria using low cost matrices. Wat Air Soil Pollut 189:149–162. doi: 10.1007/s11270-007-9563-1 CrossRefGoogle Scholar
  12. Cravotta CA, Trahan MK (1999) Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Ap Geochem 14:581–606. doi: 10.1016/S0883-2927(98)00066-3 CrossRefGoogle Scholar
  13. Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Wat Res 39:2167–2177. doi: 10.1016/j.watres.2005.03.033 CrossRefGoogle Scholar
  14. Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Environ Sci Tech 25:141–199. doi: 10.1080/10643389509388477 CrossRefGoogle Scholar
  15. García-Mendieta A, Solache-Ríos M, Olguin M (2009) Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, manganese and iron–manganese systems. Micropor Mesopor Mater 118:489–495. doi: 10.1016/j.micromeso.2008.09.028 CrossRefGoogle Scholar
  16. Genty T (2012) Comportement hydrobiogéochimique de systèmes passifs de traitement du drainage minier acide fortement contaminé en fer. PhD Diss, Chaire industrielle CRSNG Polytechnique—UQAT, Rouyn-Noranda, QC, CanadaGoogle Scholar
  17. Genty T, Bussière B, Potvin R, Benzaazoua M, Zagury GJ (2012) Dissolution of different limestone in highly contaminated acid mine drainage: application to anoxic limestone drains. Environ Earth Sci. doi: 10.1007/s12665-011-1464-3 Google Scholar
  18. Gitari W, Petrik L, Etchebers O, Key D, Iwuoha E, Okujeni C (2006) Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements. J Environ Sci 41:1729–1747. doi: 10.1016/j.fuel.2008.03.018 Google Scholar
  19. Gitari W, Petrik L, Etchebers O, Key D, Iwuoha E, Okujeni C (2008) Passive neutralisation of acid mine drainage by fly ash and its derivatives: a column leaching study. Fuel 87:1637–1650. doi: 10.1016/j.fuel.2007.08.025 CrossRefGoogle Scholar
  20. Gonzalez A, Navia R, Moreno N (2009) Fly ash from coal and petroleum coke combustion: current and innovative potential applications. Waste Manag Res 27:976–987. doi: 10.1177/0734242×09103190 CrossRefGoogle Scholar
  21. Gupta B, Curran M, Hasan S, Ghosh TK (2009) Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manag 90:954–960. doi: 10.1016/j.jenvman.2008.02.012 CrossRefGoogle Scholar
  22. Hedin RS, Nairn RW, Kleinmann RLP (1994) Passive Treatment of Coal Mine Drainage. US Bureau of Mines, PittsburghGoogle Scholar
  23. Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbent: reviews. Clear Wat Sep Purif Methods 29:189–232. doi: 10.1081/SPM-100100009 CrossRefGoogle Scholar
  24. Jha V, Matsuda M, Miyake M (2008) Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J Hazard Mater 160:148–153. doi: 10.1016/j.jhazmat.2008.02.107 CrossRefGoogle Scholar
  25. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14. doi: 10.1016/j.scitotenv.2004.09.002 CrossRefGoogle Scholar
  26. Johnson JS, Westmoreland CG, Sweeton FH, Kraus KA, Hagaman EW (1986) Modification of cation exchange properties of activated carbon by treatment with nitric acid. J Chromatogr 345:231–248. doi: 10.1016/S0021-9673(01)87025-4 Google Scholar
  27. Karathanasis AD, Edwards JD, Barton CD (2010) Manganese and sulphate removal from a synthetic mine drainage through pilot scale bioreactor batch experiments. Mine Water Environ 29:144–153. doi: 10.1007/s10230-009-0095-3 CrossRefGoogle Scholar
  28. Kirby CS, Cravotta CA (2005) Net alkalinity and net acidity: theoretical considerations. Appl Geochem 20:1920–1940. doi: 10.1016/j.apgeochem.2005.07.002 CrossRefGoogle Scholar
  29. Kleinmann RLP, Crerar DA, Pacelli RR (1981) Biogeochemistry of acid mine drainage and a method to control acid formation. Mining Eng 300–304Google Scholar
  30. KTH (2010) Visual MINTEQ A free equilibrium speciation model, version 3.0, beta version. http://www.lwr.kth.se/English/OurSoftware/vminteq/index.html, accessed 15 Sept 2010
  31. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275. doi: 10.1016/j.apgeochem.2006.09.010 CrossRefGoogle Scholar
  32. Madzivire G, Petrik L, Gitari W, Ojumu T, Balfour G (2010) Application of coal fly ash to circum-neutral mine waters for the removal of sulphates as gypsum and ettringite. Miner Eng 23:252–257. doi: 10.1016/j.mineng.2009.12.004 CrossRefGoogle Scholar
  33. McCarthy DF (1977) Essentials of soil mechanics and foundations. Reston Publ, RestonGoogle Scholar
  34. Neculita CM, Zagury GJ (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization. J Hazard Mater 157:358–366. doi: 10.1016/j.jhazmat.2008.01.002 CrossRefGoogle Scholar
  35. Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulphate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16. doi: 10.2134/jeq2006.0066 CrossRefGoogle Scholar
  36. Neculita CM, Zagury GJ, Bussiere B (2008a) Effectiveness of sulphate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23:3442–3451. doi: 10.1016/j.apgeochem.2008.08.004 CrossRefGoogle Scholar
  37. Neculita CM, Zagury GJ, Bussiere B (2008b) Effectiveness of sulphate-reducing passive bioreactors for treating highly contaminated acid mine drainage: II. Metal removal mechanisms and potential mobility. Ap Geochem 23:3545–3560. doi: 10.1016/j.apgeochem.2008.08.014 CrossRefGoogle Scholar
  38. Nurchi VM, Crisponi G, Villaesca I (2010) Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass. Coord Chem Rev 254:2181–2192. doi: 10.1016/j.ccr.2010.05.022 CrossRefGoogle Scholar
  39. Ouellet S, Bussière B, Mbonimpa M, Benzaazoua M, Aubertin M (2006) Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill. Miner Eng 19:407–419. doi: 10.1016/j.mineng.2005.10.006 CrossRefGoogle Scholar
  40. Polat M, Guler E, Akar G, Mordogan H, Ipekoglu U, Cohen H (2002) Neutralization of acid mine drainage by Turkish lignitic fly ash: role of organic additives in the fixation of toxic elements. J Chem Technol Biotechnol 77:372–376. doi: 10.1002/jctb.564 CrossRefGoogle Scholar
  41. Potvin R (2009) Évaluation à différentes échelles de la performance de systèmes de traitement passif pour des effluents fortement contaminés par le drainage minier acide. PhD Diss, Chaire industrielle CRSNG Polytechnique—UQAT, Rouyn-Noranda, QC, CanadaGoogle Scholar
  42. Prasad PSR, Prasad S, Krishna V, Babu EVSSK, Sreedhar B, Ramana S (2006) In situ FTIR study on the dehydration of natural goethite. J Asian Earth Sci 27:503–511. doi: 10.1016/j.jseaes.2005.05.005 CrossRefGoogle Scholar
  43. Reynolds K, Petrik L (2005) The use of fly ash for the control and treatment of acid mine drainage. Proc, World of Coal Ash Symp (2005) Lexington. KY, USAGoogle Scholar
  44. Seki K, Thullner M, Hanada J, Miyazaki T (2006) Moderate bioclogging leading to preferential flow paths in biobarriers. Gr Wat Monitor Remediat 26:68–76. doi: 10.1111/j.1745-6592.2006.00086.x CrossRefGoogle Scholar
  45. Skousen JG, Ziemkiewicz PF (2005) Performance of 116 passive treatment systems for acid mine drainage. Proc, National Mtg of the American Soc of Mining and Reclamation, Lexington, KY, USAGoogle Scholar
  46. Soleimani S, Van Geel P, Isgor B, Mostafa M (2009) Modeling of biological clogging in unsaturated porous media. J Contam Hydrol 106:39–50. doi: 10.1016/j.jconhyd.2008.12.007 CrossRefGoogle Scholar
  47. Twardowska I, Kyziol J (2008) Sorption of metals onto natural organic matter as a function of complexation and adsorbent-adsorbate contact mode. Environ Int 28:783–791. doi: 10.1016/S0160-4120(02)00106-X CrossRefGoogle Scholar
  48. Vadapalli K, Klink M, Etchebers O, Petrik L, Gitari W, White R, Key D, Iwuoha E (2008) Neutralization of acid mine drainage using fly ash, and strength development of the resulting solid residues. S Afr J Sci 104:317–322Google Scholar
  49. Van der Lee J (1993) JCHESS version 2.0. École des Mines de Paris, Centre d’information géologique, 2000–2001. http://chess.ensmp.fr. Accessed 15 Sept 2010
  50. Zagury GJ, Colombano SM, Narasiah KS, Ballivy G (1997) Stabilisation de résidus acides miniers par des résidus alcalins d’usines de pâtes et papier. Environ Technol 18:959–973. doi: 10(1080/09593330),1997,9618575 Google Scholar
  51. Zagury JG, Oudjehani K, Deschênes L (2004) Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Sci Total Environ 320:211–224. doi: 10.1016/j.scitotenv.2003.08.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thomas Genty
    • 1
    • 2
    Email author
  • Bruno Bussière
    • 1
    • 2
  • Mostafa Benzaazoua
    • 2
    • 3
  • Gérald J. Zagury
    • 2
    • 4
  1. 1.Department of Applied SciencesUQATRouyn-NorandaCanada
  2. 2.Industrial NSERC-Polytechnique-UQAT Chair, Environment and Mine Waste MgmtRouyn-NorandaCanada
  3. 3.Laboratoire de Génie Civil et d’Ingénierie EnvironnementaleINSA de LyonVilleurbanne CedexFrance
  4. 4.Department of Civil, Geological, and Mining EngineeringÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations