Mine Water and the Environment

, Volume 30, Issue 4, pp 312–319 | Cite as

Ecological Restoration of Novel Lake Districts: New Approaches for New Landscapes

Technical Communication

Abstract

Mine void pit lakes often contain water of poor quality with potential for environmental harm that may dwarf other mine closure environmental issues in terms of severity, scope, and longevity. This is particularly so when many pit lakes occur close together and thus form a new “lake district” landscape. Pit lakes that can be developed into healthy lake or wetland ecosystems as a beneficial end use provide opportunities for the mining industry to fulfil commitments to sustainability. Clearly articulated restoration goals and a strategic closure plan are necessary to ensure pit lake restoration toward a new, yet regionally-relevant, aquatic ecosystem, which can achieve sustainability as an out-of-kind environmental offset. Such an approach must also consider obstacles to development of a self-sustaining aquatic ecosystem, such as water quality and ecological requirements. We recommend integration of pit lakes into their catchments as a landscape restoration planning exercise with clearly-identified roles and objectives for each new lake habitat and its surrounds.

Keywords

Australia Germany Mining Pit lake Rehabilitation Restoration 

Resumen

Además de los bien documentados efectos de polución acuática, las operaciones mineras tienen un gran efecto sobre las corrientes hidrológicas y el régimen de flujos en las áreas hidrológicamente conectadas, aguas abajo. Este trabajo documenta los cambios a largo plazo (1923–2008) que ocurrieron en las áreas superficiales de drenaje y los flujos de dos ríos pequeños o medianos (100–1,000 km2) drenando a través del campo Ordovician de petróleo de origen bituminoso del noreste de Estonia. Se relevó el impacto de la expansión de la actividad minera en el área desde mediados hasta finales del siglo 20, a través del análisis conjunto de los regímenes de flujo y de los datos mineros (velocidades de descarga y lugares con actividad minera). Durante las fases de la minería intensiva, el flujo en invierno y verano es entre 53–72% mayor que el promedio en el área Purtse y entre 66–92%% mayor en el área más pequeña de Pühajõgi donde la influencia volumétrica de las descargas mineras es mayor. La contribución de aguas subterráneas bombeadas a la superficie controla los mayores incrementos en el flujo medio anual. Aunque el impacto hidrológico más común que provocan las operaciones mineras sea el incremento del flujo, también pueden observarse fases de sequías en aquellos cursos de agua desfavorecidos por la transferencia de los desagües hacia otros cursos reduciendo el área hidrológica efectiva. Se analizan también las implicancias en el cambio del régimen de flujo sobre la calidad del río y las opciones para su control.

摘要

露天开采遗留的采坑积水湖水质往往较差,由此引起的潜在环境危害常常使闭坑矿井的环境问题危害程度加重、影响范围扩大、作用时间延长。当许多采坑积水湖距离较近而连成“采坑积水湖区”时,采坑积水湖不良水质的环境效应将更加明显。采坑积水湖可以最终修复为健康的湖泊或湿地生态系统;该修复目标也为采矿企业履行其矿区可持续开发承诺提供了机会。明确的湖区修复目标和周密的矿井闭坑方案至关重要,它们有助于将采坑积水湖发展为一个新的、基于区域背景的水生生态系统,以非本源的环境补偿形式实现矿区环境可持续发展。同时,在建立相对独立的“新湖区”水生生态系统时,必须考虑水生生态系统对水质与生态条件的要求与困难。我们建议将采坑积水湖区修复融入整个流域景观治理计划当中,明确规划每个新湖泊生境的环境作用与修复目标。

References

  1. Axler R, Yokom S, Tikkanen C, McDonald M, Runke H, Wilcox D, Cady B (1998) Restoration of a mine pit lake from aquacultural nutrient enrichment. Restor Ecol 6:1–19CrossRefGoogle Scholar
  2. Bell LC (2001) Establishment of native ecosystems after mining —Australian experience across diverse biogeographic zones. Ecol Eng 17:179–186CrossRefGoogle Scholar
  3. Bott TL (1996) Primary production and metabolism. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 533–556Google Scholar
  4. Brewer JS, Menzel T (2009) A method for evaluating outcomes of restoration when no reference sites exist. Restor Ecol 17:4–11CrossRefGoogle Scholar
  5. Campbell RS, Lind OT (1969) Water quality and aging of lakes. J Water Pollut Control Fed 41:1943–1955Google Scholar
  6. Castendyk D (2011) Lessons learned from pit lake planning and development. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 15–28Google Scholar
  7. Castendyk D, Eary T (2009) The nature and global distribution of pit lakes. In: Castendyk D, Eary T, Park B (eds) Mine pit lakes: characteristics, predictive modeling, and sustainability. Society for Mining Engineering (SME), Littleton, pp 1–11Google Scholar
  8. Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39:254–260CrossRefGoogle Scholar
  9. Charles D (1998) Wasteworld. New Sci 157:32Google Scholar
  10. DMP/EPA (2011) Guidelines for preparing mine closure plans. Western Australian Department of Mines and Petroleum (DMP), Environmental Protection Authority of Western Australia (EPA), PerthGoogle Scholar
  11. Doupé RG, Lymbery AJ (2005) Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water Environ 24:134–138CrossRefGoogle Scholar
  12. Ewel JJ, Putz FE (2004) A place for alien species in ecosystem restoration. Front Ecol Environ 2:354–360CrossRefGoogle Scholar
  13. Grant C (2006) State-and-transition successional model for bauxite mining rehabilitation in the Jarrah Forest of Western Australia. Restor Ecol 14:28–37CrossRefGoogle Scholar
  14. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  15. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605CrossRefGoogle Scholar
  16. Jones H, McCullough CD (2011) Regulator guidance and legislation relevant to pit lakes. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 137–152Google Scholar
  17. Kalin M, Geller W (1998) Limnological fundamentals of acid mining lakes. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes. Springer, Berlin, pp 423–425Google Scholar
  18. Kalin M, Cao Y, Smith M, Olaveson MM (2001) Development of the phytoplankton community in a pit-lake in relation to water quality changes. Water Res 35:3215–3225CrossRefGoogle Scholar
  19. King DL, Simmler JJ, Decker CS, Ogg CW (1974) Acid strip mine lake recovery. J Water Pollut Control Fed 46:2301–2315Google Scholar
  20. Klapper H, Geller W (2002) Water quality management of mining lakes—a new field of applied hydrobiology. Acta Hydrochim Hydrobiol 29:363–374CrossRefGoogle Scholar
  21. Kumar RN, McCullough CD, Lund MA Pit lakes in Australia. In: Geller W, Schultze M (eds) Acidic pit lakes—legacies of surface mining of coal and metal ores. Springer, Berlin (in press)Google Scholar
  22. Lee J, Kim Y (2007) A quantitative estimation of the factors affecting pH changes using simple geochemical data from acid mine drainage. Environ Geol 55:65–75CrossRefGoogle Scholar
  23. Lugo AE (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecol Monogr 62:2–41CrossRefGoogle Scholar
  24. Lund MA, McCullough CD (2009) Biological remediation of low sulphate acidic pit lake waters with limestone pH neutralisation and amended nutrients. In: Proceedings of the international mine water conference (cd), Pretoria, South Africa, pp 519–525Google Scholar
  25. Lund MA, McCullough CD (2011) Restoring pit lakes: factoring in the biology. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 83–90Google Scholar
  26. McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Min Reclam Environ 22:105–119CrossRefGoogle Scholar
  27. McCullough CD, Lund MA (2006) Opportunities for sustainable mining pit lakes in Australia. Mine Water Environ 25:220–226CrossRefGoogle Scholar
  28. McCullough CD, Hunt D, Evans LH (2009a) Sustainable development of open pit mines: creating beneficial end uses for pit lakes. In: Castendyk D, Eary T, Park B (eds) Mine pit lakes: characteristics, predictive modeling, and sustainability. SME, Colorado, pp 249–268Google Scholar
  29. McCullough CD, Steenbergen J, te Beest C, Lund MA (2009b) More than water quality: environmental limitations to a fishery in acid pit lakes of Collie, south-west Australia. In: Proceedings of the international mine water conference, Pretoria, South Africa, pp 507–511Google Scholar
  30. McKenney BA, Kiesecker JM (2010) Policy development for biodiversity offsets: a review of offset frameworks. J Environ Manag 45:165–176CrossRefGoogle Scholar
  31. Newmont Golden Ridge Ltd. (2009) BBOP pilot project case study. Akyem Gold Mining Project, Eastern Region, Ghana. Accra, Ghana. http://www.forest-trends.org/biodiversityoffsetprogram/guidelines/newmont-casestudy.pdf
  32. Nixdorf B, Kapfer M (1998) Stimulation of phototrophic pelagic and benthic metabolism close to sediments in acidic mining lakes. Water Air Soil Pollut 108:317–330CrossRefGoogle Scholar
  33. Nixdorf B, Fyson A, Krumbeck H (2001) Review: plant life in extremely acidic waters. Environ Exp Biol 46:203–211CrossRefGoogle Scholar
  34. Nixdorf B, Lessmann D, Deneke R (2005) Mining lakes in a disturbed landscape: application of the EU Water Framework Directive and future management strategies. Ecol Eng 24:67–73CrossRefGoogle Scholar
  35. NSW EPA (2002) Green offsets for sustainable development, a concept paper. New South Wales Environmental Protection Authority (NSW EPA), SydneyGoogle Scholar
  36. Otahel’ová H, Oťahel’ J (2006) Distribution of aquatic macrophytes in pit lakes in relation to the environment (Borská Nížina lowland, Slovakia). Eklógia 25:398–411Google Scholar
  37. Puhalovich AA, Coghill M (2011) Management of mine wastes using pit underground void backfilling methods: current issues and approaches. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 3–14Google Scholar
  38. Pyke CR (2004) Habitat loss confounds climate change impacts. Front Ecol Environ 2:178–182CrossRefGoogle Scholar
  39. Rio Tinto (2008) Rio Tinto’s biodiversity strategy. Rio Tinto, London, UK. http://www.riotinto.com/documents/ReportsPublications/RTBidoversitystrategyfinal.pdf
  40. Sánchez-Espanã J, Lo′pez-Pamo E, Santofimia E, Diez-Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287CrossRefGoogle Scholar
  41. Santoul F, Figuerola J, Green A (2004) Importance of gravel pits for the conservation of waterbirds in the Garonne River floodplain (southwest France). Biodivers Conserv 13:1231–1243CrossRefGoogle Scholar
  42. Schultze M, Geller W, Benthaus F-C, Jolas P (2011) Filling and management of pit lakes with diverted river water and with mine water—German experiences. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 107–120Google Scholar
  43. Shwartz RS, May B (2008) Genetic evaluation of isolated populations for use in reintroductions reveals significant genetic bottlenecks in potential stocks of Sacramento Perch. Trans Am Fish Soc 137:1764–1777CrossRefGoogle Scholar
  44. Sim LL, Davis JA, Chambers JM (2009) Development of conceptual models for ecological regime change in temporary Australian wetlands. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, pp 259–279Google Scholar
  45. Sklenička P, Kašparová I (2008) Restoration of visual values in a post-mining landscape. J Landsc Stud 1:1–10Google Scholar
  46. Society for Ecological Restoration International (2004) The SER international primer on ecological restoration. http://www.ser.org/content/ecological_restoration_primer.asp
  47. Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24:271–279CrossRefGoogle Scholar
  48. Tittel J, Kamjunke N (2004) Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments. Freshwater Biol 49:1062–1071CrossRefGoogle Scholar
  49. Van Etten EJB (2011) The role and value of riparian vegetation for pit lakes. In: McCullough CD (ed) Mine pit lake closure and management. Australian Centre for Geomechanics, Perth, pp 91–108Google Scholar
  50. Westcott F, Watson L (2007) End pit lakes technical guidance document. Report 2005-61. Clearwater Environmental Consultants, Alberta, CanadaGoogle Scholar
  51. Younger PL (2002) Mine waste or mine voids: which is the most important long-term source of polluted mine drainage?. http://www.mineralresourcesforum.org/docs/pdfs/younger1102.pdf. Accessed 22 Feb 2006
  52. Żurek R Lakes in large scale open-pits in Poland. In: Schultze M, Geller W (eds) Acidic pit lakes—legacies of surface mining of coal and metal ores. Springer, Berlin (in press)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Clint D. McCullough
    • 1
    • 2
  • Eddie J. B. van Etten
    • 1
  1. 1.Mine Water and Environment Research Centre (MiWER)Edith Cowan UniversityPerthAustralia
  2. 2.Golder AssociatesPerthAustralia

Personalised recommendations