Advertisement

Age, growth, and reproductive biology of the Atlantic spadefish Chaetodipterus faber in southern Brazil

  • Marcelo Soeth
  • Luis Fernando Fávaro
  • Henry Louis Spach
  • Felippe Alexandre Daros
  • Ana Emília Woltrich
  • Alberto Teodorico Correia
Full Paper

Abstract

This is the first study to investigate the age, growth and reproductive biology of the Atlantic spadefish Chaetodipterus faber in southern Brazil. A total of 625 individuals [total length (TL) ranging from 7 mm to 510 mm] were sampled at the Paranaguá Estuarine Complex (PEC) and adjacent coastal areas over a year (August 2015 to July 2016). Age estimation based on sagittal otolith cross section showed that C. faber has a 17-year longevity close to its southern distributional limit, two times greater than previously reported from the North Atlantic Ocean. Sexual growth dimorphism was not evident as the male:female sex ratio was 1:1.17. The species displayed asymptotic growth. Fitted von Bertalanffy growth function estimates for all individuals were L = 508.81 mm, k = 0.22 year−1, and t0 = -0.05 year. The histological gonadal examination and gonado-somatic index indicated that C. faber is a batch spawner with a main reproduction period from October to January in subtropical latitudes at 25°S. Postovulatory follicles were often recorded in the ovaries of spawning capable individuals indicating a high frequency of spawns over the reproductive period. The data also suggest that estuaries are important reproductive areas for this species that most likely exhibits a seasonal movement for spawning aggregation purposes. Females mature approximately 0.5 years later than males and are capable of spawning just prior to two years old. Fishery closures during the spawning season and fishing size restrictions should be used to manage the C. faber stock in southern Brazil. The effects of current harvest levels are unknown and warrant further investigation to assist management decisions.

Keywords

Ephippidae Growth modelling Reproduction Sexual maturity South Atlantic 

Notes

Acknowledgements

The authors are grateful to A. Almeida for the help with the preliminary lab work. We thank the fishermen from Pontal do Paraná for helping with the fish collection. The authors are also grateful to A. O. Ávila-da-Silva for lending us the Isomet Saw. We thank the Center of Studies of the Sea (CEM/UFPR) and the Coastal and Oceanic Systems Post-graduate (PGSISCO) for sampling support. Special thanks to R. Wartenberg for the English review. Financial support was provided by the Araucária Foundation (Cov. 020/2015). The first author and F. A. Daros were funded from doctoral (CAPES/PGSISCO) and postdoctoral (CAPES–1669551) fellowship, respectively. A.T. Correia benefited from a Special Visiting Research Fellowship (CNPq/PVE–314444/2014-9). This research was conducted with the approval of the Institute for Biodiversity Conservation of the Brazilian Ministry of Environment (permits 46222-1 and 511462).

References

  1. Aschenbrenner A, Freitas MO, Rocha GRA, Moura RL, Francini-Filho RB, Minte-Vera C, Ferreira BP (2017) Age, growth parameters and fisheries indices for the lane snapper in the Abrolhos Bank, SW Atlantic. Fish Res 194:155–163Google Scholar
  2. Barletta-Bergan A, Barletta M, Saint-Paul U (2002) Community structure and temporal variability of ichthyoplankton in North Brazilian mangrove creeks. J Fish Biol 61:33–51Google Scholar
  3. Barros B, Sakai Y, Abrunhosa FA, Vallinoto M (2013) Trophic adaptability of late juvenile Atlantic spadefish Chaetodipterus faber (Teleostei: Ephippidae) related to habitat preferences in an estuary in northeastern Brazil. Hydrobiologia 717:161–167Google Scholar
  4. Barros B, Sakai Y, Pereira PHC, Gasset E, Buchet V, Maamaatuaiahutapu M, Ready JS, Oliveira Y, Vallinoto M (2015) Comparative allometric growth of the mimetic ephippid reef fishes Chaetodipterus faber and Platax orbicularis. PLoS One 10:1–16Google Scholar
  5. Beamish RJ, Fournier DA (1981) A method for comparing the precision of a set of age determinations. Can J Fish Aquat Sci 38:982–983Google Scholar
  6. Bell M (2005) Atlantic spadefish. In: Comprehensive Wildlife Conservation Strategy. Columbia, S.C., S.C. Department of Natural Resources. http://www.dnr.sc.gov/cwcs/pdf/Atlanticspadefish.pdf. Accessed 05 May 2018
  7. Bernardes RÁ, Dias JF (2000) Aspectos da reprodução do peixe-porco, Balistes capriscus (Gmelin) (Actinopterygii, Tetraodontiformes, Balistidae) coletado na costa sul do estado de São Paulo, Brasil. Revta bras Zool 17:687–696Google Scholar
  8. Bonecker FT, Castro MS, Bonecker ACB (2009) Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations. Panam J Aquat Sci 4(2):239–246Google Scholar
  9. Bornatowski H, Robert MC, Costa L (2007) Dados sobre a alimentação de jovens de tubarão-tigre, Galeocerdo cuvier (Péron & Lesueur) (Elasmobranchii, Carcharhinidae), do sul do Brasil. Pan-Am j aquat sci 3:10–13Google Scholar
  10. Boudinar AS, Chaoui L, Kara MH (2016) Age, growth and reproduction of the sand smelt Atherina boyeri Risso, 1810 in Mellah Lagoon (Eastern Algeria). J Appl Ichthyol 32:302-309Google Scholar
  11. Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 130:411–423Google Scholar
  12. Boulcott P, Wright PJ, Gibb FM, Jensen H, Gibb IM (2007) Regional variation in maturation of sandeels in the North Sea. ICES J Mar Sci 64:369–376Google Scholar
  13. Brandini F (2014) Marine biodiversity and sustainability of fishing resources in Brazil: a case study of the coast of Paraná state. Reg Environ Change 14(6):2127–2137Google Scholar
  14. Brown-Peterson NJ (2003) The reproductive biology of the spotted seatrout. In: Bortone S (ed) The biology of the spotted seatrout. CRC Press, Boca Raton, FL, pp 99–133Google Scholar
  15. Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK (2011) A Standardized Terminology for Describing Reproductive Development in Fishes. Mar Coast Fish 3:52–70Google Scholar
  16. Bueno LS, Bertoncini AA, Koenig CC, Coleman FC, Freitas MO, Leite JR, Souza TF, Hostim-Silva M (2016) Evidence for spawning aggregations of the endangered Atlantic goliath grouper Epinephelus Itajara in southern Brazil. J Fish Biol 89:876–889Google Scholar
  17. Burgess WE (2002) Ephippidae. In: Carpenter KE (ed) FAO (Food and Agriculture Organization) Species Identification Guide for Fishery Purposes: The Living Marine Resources of the Western Central Atlantic Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals vol. 3. FAO, Rome, pp 1799–1800Google Scholar
  18. Burghart S, Van Woudenberg L, Daniels C, Meyers S, Peebles E, Breitbart M (2014) Disparity between planktonic fish egg and larval communities as indicated by DNA barcoding. Mar Ecol Prog Ser 503:195–204Google Scholar
  19. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach, 2nd edn. Springer, New YorkGoogle Scholar
  20. Calder DR (1990) Seasonal cycles of activity and inactivity in some hydroids from Virginia and South Carolina, U.S.A. Can J Zool 68:442–450Google Scholar
  21. Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242Google Scholar
  22. Castro MS, Bonecker ATC, Valentin JL (2005) Seasonal Variation in Fish Larvae at the Entrance of Guanabara Bay, Brazil. Braz Arch Biol Technol 48:121–128Google Scholar
  23. Chang WYB (1982) A statistical method for evaluating the reproducibility of age determination. Can J Fish Aquat Sci 39:1208–1210Google Scholar
  24. Chaves PTC, Otto G (1998) Aspectos biológicos de Diapterus rhombeus (Cuvier) (Teleostei, Gerreidae) na Baía de Guaratuba, Paraná, Brasil. Revta bras Zool 15:289–295Google Scholar
  25. Chao NL, Frédou FL, Haimovici M, Peres MB, Polidoro B, Raseira M, Subirá R, Carpenter K (2015) A Popular and Potentially Sustainable Fishery Resource under Pressure-Extinction Risk and Conservation of Brazilian Sciaenidae (Teleostei: Perciformes). Glob Eco Conserv 4:117–126Google Scholar
  26. Chapman RW (1978) Observations of spawning behavior in Atlantic spadefish, Chaetodipterus faber. Copeia 2:336–336Google Scholar
  27. Conover WJ (1990) Practical nonparametric statistics. New Jersey: John Willey & SonsGoogle Scholar
  28. Daros FA, Bueno LS, Vilar CC, Passos AC, Spach HL (2012) Checklist of rocky reef fishes from the Currais Archipelago and Itacolomis Island, Paraná state, Brazil. Check list 8:349–354Google Scholar
  29. Davies J, Persons W, Morgan C, Liao H, Jone C, Bobko S, Robillard E, Underkoffler K, Gilmore J (2015) Age Estimation of Otolith Transverse Cross-Sections for Altantic Spadefish Chaetodipterus faber. https://www.odu.edu/content/dam/odu/offices/center-for-quantitative-fisheries/docs/atlantic-spadefish-otolith-ageing-protocol.pdf. Accessed 12 July 2016
  30. Dias JF, Fernandez WS, Schmidt TCS (2014) Length-weight relationship of 73 fish species caught in the southeastern inner continental shelf region of Brazil. Lat Am J Aquat Res 42:127–136Google Scholar
  31. Ditty JG, Shaw RF, Cope JS (1994) A re-description of Atlantic spadefish larvae, Chaetodipterus faber (family: Ephippidae), and their distribution, abundance, and seasonal occurrence in the northern Gulf of Mexico. Fish Bull 92:262–274Google Scholar
  32. Domeier ML, Colin PL (1997) Tropical reef fish spawning aggregations: defined and reviewed. Bull Mar Sci 60:698–726Google Scholar
  33. Eschmeyer WN, Fong DN (2018) Catalog of Fishes. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 25 January 2018
  34. Ferraz D, Giarrizzo T (2015) Weight-length and Length-length relationships for 37 demersal fish species from the Marapanim River, northeastern coast of Pará State, Brazil. Biota Amaz 5:78–82Google Scholar
  35. Freitas MO, Previero M, Minte-vera C, Spach HL, Francini-filho RB, Moura RL (2018) Reproductive biology and management of two commercially important groupers in the SW Atlantic. Environ Biol Fish 101:79–94Google Scholar
  36. Ganias K, Nunes C, Stratoudakis Y (2007) Degeneration of Postovulatory Follicles in the Iberian Sardine Sardina Pilchardus: Structural Changes and Factors Affecting Resorption. Fish Bull 105:131–139Google Scholar
  37. Geffen AJ, Nash RDM (1995) Periodicity of otolith check formation in the juvenile plaice Pleuronectes platessa L. In Recent Developments in Fish Otolith Research (Secor DJ, Dean JM, Campana SE, eds). Columbia, OH: Belle W Baruch, pp 65–73Google Scholar
  38. Gerhardinger LC, Medeiros R, Marenzi RC, Bertoncini AA, Hostim-Silva M (2006) Local ecological knowledge on the goliath grouper Epinephelus itajara (Teleostei: Serranidae) in Southern Brazil. Neotrop Ichthyol 4:441–450Google Scholar
  39. Godefroid RS, Hofstaetter M, Spach HL (1999) Larval fish in the surf zone of Pontal do Sul beach, Paraná, Brazil. Revta bras de Zool 16:1005–1011Google Scholar
  40. Gurjão LM, Furtado-Neto MA, Santos RA, Cascon P (2004) Análise de conteúdos estomacais de quatro golfinhos (Cetacea: Delphinidae) encalhados em praias no litoral do Estado do Ceará, Brasil. Rev Bioc 10:39–45Google Scholar
  41. Haluch CF, Abilhoa V, Freitas MO, Corrêa MFM, Hostim-Silva M (2011) Estrutura populacional e biologia reprodutiva de Menticirrhus americanus (linnaeus, 1758) (Teleostei, Sciaenidae) na baía de Ubatuba-Enseada, Santa Catarina, Brasil. Biotemas 24:47–59Google Scholar
  42. Hayse JW (1990) Feeding habits, age, growth, and reproduction of Atlantic spadefish Chaetodipterus faber (Pisces: Ephippidae) in South Carolina. Fish Bull 88:67–83Google Scholar
  43. Hamrin SF, Persson L (1986) Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47:223–232Google Scholar
  44. Harry AV, Tobin AJ, Simpfendorfer CA (2013) Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia. Mar Freshwater Res 64:277–293Google Scholar
  45. He X, Field JC, Pearson DE, Lefebvre LS (2016) Age sample sizes and their effects on growth estimation and stock assessment outputs: three case studies from U.S. west coast fisheries. Fish Res 180:92–102Google Scholar
  46. Heyman WD, Kjerfve B (2008) Coral Reef Paper Characterization of Transient Multi Species Reef Fish Spawning Aggregations At Gladden Spit, Belize. Bull Mar Sci 83:531–551.Google Scholar
  47. Hixon MA, Johnson DW, Sogard SM (2014) BOFFFs: in the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71:2171–2185Google Scholar
  48. Hunter JR, Macewicz BJ, Sibert JR (1986) The spawning frequency of skipjack tuna, Katsuwonus pelamis, from the south Pacific. Fish Bull 84:895–903Google Scholar
  49. Hunter JR, Macewicz BJ (2003) Improving the accuracy and precision of reproductive information used in fisheries. In: Kjesbu OS, Hunter JR, Witthames PR (ed) Report of the working group on modern approaches to assess maturity and fecundity of warm-and cold-water fish and squids. Institute of Marine Research, Bergen, Norway, pp 57–68Google Scholar
  50. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307Google Scholar
  51. Hyndes GA, Loneragan NR, Potter IC (1992) Influence of sectioning otoliths on marginal increment trends and age and growth estimates for the flathead Platycephalus speculator. Fish Bull 90:276–284Google Scholar
  52. IBAMA (2007) Estatística da Pesca 2007: Brasil, Grandes Regiões e Unidades da Federação. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Brasília. http://www.ibama.gov.br/sophia/cnia/livros/estatisticadepescadigital.pdf. Accessed 06 April 2010
  53. IGFA (2017) International Game Fish Association. http://wrec.igfa.org/WRecordsList.aspx?lc=AllTackle&cn=Spadefish,%20Atlantic. Accessed 31 September 2017
  54. Johannes RE (1978) Reproductive strategies of coastal marine fishes in the tropics. Environ Biol Fishes 3:65–84Google Scholar
  55. Jørgensen C, Enberg K, Mangel M (2016) Modelling and interpreting fish bioenergetics: A role for behaviour, life-history traits and survival trade-offs. J Fish Biol 88:389–402Google Scholar
  56. Joyeux JC, Pereira BB, Almeida HG (2004) The flood-tide ichthyoplanktonic community at the entrance into a Brazilian tropical estuary. J Plankton Res 26:1277–1287Google Scholar
  57. Kimura DK (1980) Likelihood methods for the von Bertalanffy growth curve. Fish Bull 77:765–776Google Scholar
  58. King M (2007) Fisheries Biology, Assessment and Management, 2nd edn. Blackwell Publishing, Oxford, UKGoogle Scholar
  59. Kosmidis I (2014) Improved Estimation in Cumulative Link Models. J R Stat Soc Series B Stat Methodol 76:169–196Google Scholar
  60. Lana PC, Marone E, Lopes R, Machado EC (2001) The subtropical estuarine complex of Paranaguá Bay. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America Vol. 144, Springer, Berlin, pp 132–145Google Scholar
  61. Le Cren ED (1951) The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J Anim Ecol 20:201–219Google Scholar
  62. Lowerre-barbieri SK (2009) Reproduction in relation to conservation and exploitation of marine fishes. In: Jamieson BGM (ed) Reproductive biology and phylogeny of fishes (Agnathans and bony fishes), Vol 9, Part B. Science Publishers, Enfield, CT, pp 371–394Google Scholar
  63. Lowerre-Barbieri SK, Lowerre JM, Barbieri LR (1998) Multiple spawning and the dynamics of fish populations: inferences from an individual-based simulation model. Can J Fish Aquat Sci 55:2244–2254Google Scholar
  64. Lowerre-Barbieri SK, Ganias K, Saborido-Rey F, Murua H, Hunter JR (2011) Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar Coast Fish 3: 71–91Google Scholar
  65. Macchi GJ, Acha EM, Lasta CA (2002) Reproduction of black drum (Pogonias cromis) in the Rio de la Plata estuary, Argentina. Fish Res 59:83–92Google Scholar
  66. Machado LF, Damasceno JS, Bertoncini ÁA, Tosta VC, Farro APG, Hostim-Silva M, Oliveira C (2017) Population genetic structure and demographic history of the spadefish, Chaetodipterus faber (Ephippidae) from Southwestern Atlantic. J Exp Mar Bio Ecol 487:45–52Google Scholar
  67. Misund OA (1993) Avoidance behaviour of herring (Clupea harengus) and mackerel (Scomber scombrus) in purse seine capture situations. Fish Res 16:179–194Google Scholar
  68. MPA (2012) Boletim de Pesca e Aquicultura 2011. Ministério da Pesca e Aquicultura. http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/est_2011_bol__bra.pdf. Accessed 05 May 2016
  69. Morales-Nin B, Panfili J (2002) Age estimation. In: Panfili J, Pontual H, Troadec H, Wright PJ (eds) Manual of Fish Sclerochronology. Brest: Ifremer–IRD, pp 91–98Google Scholar
  70. Morgan MJ, Trippel EA (1996) Skewed sex ratios in spawning shoals of Atlantic cod (Gadus morhua). ICES J Mar Sci 53:820–826Google Scholar
  71. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283Google Scholar
  72. Natanson LJ, Mello JJ, Campana SE (2002) Validated age and growth of the Porbeagle shark (Lamna nasus) in the western North Atlantic Ocean. Fish Bull 100:266–278Google Scholar
  73. Nelson JS (2006) Fishes of the World, fourth ed. John Wiley & Sons, Hoboken, New JerseyGoogle Scholar
  74. Nordeng H (1983) Solution to the “char problem” based on Arctic char (Salvelinus alpinus) in Norway. Can J Fish Aquat Sci 40:372–87Google Scholar
  75. Ogle DH (2016) Introductory Fisheries Analyses With R. CRC Press. Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  76. Olson MH (1996) Ontogenetic niche shifts in Largemouth bass: variability and consequences for first-year growth. Ecology 77:179–190Google Scholar
  77. Panfili J, Morales-Nin B (2002) Semi-direct validation. In: Panfili J, Pontual H, Troadec H, Wright PJ (eds) Manual of Fish Sclerochronology, Brest, Ifremer–IRD, pp 129–134Google Scholar
  78. Pauly D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci 39:175–192Google Scholar
  79. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr (1998) Fishing Down Marine Food Webs. Science 279:860–863Google Scholar
  80. Pilling GM, Millner RS, Easey MW, Maxwell DL, Tidd AN (2007) Phenology and North Sea cod Gadus morhua L.: has climate change affected otolith annulus formation and growth? J Fish Biol 70:584–599Google Scholar
  81. Pinheiro HT, Joyeux JC, Martins AS (2010) Reef fisheries and underwater surveys indicate overfishing of a Brazilian Coastal Island. Nat Conserv 8:151–159Google Scholar
  82. PMAP-BS (2017a) Projeto de Monitoramento da Atividade Pesqueira na Bacia de Santos. Relatório Técnico Semestral. Agosto a Dezembro de 2016. http://www.comunicabaciadesantos.com.br. Accessed 27 November 2017
  83. PMAP-BS (2017b) Projeto de Monitoramento da Atividade Pesqueira na Bacia de Santos. Relatório Técnico Semestral. Janeiro a Junho de 2017. http://www.comunicabaciadesantos.com.br. Accessed 20 May 2018
  84. PMAP-SC (2018) Projeto de Monitoramento da Atividade Pesqueira em Santa Catarina - PMAP-SC. http://pmap-sc.acad.univali.br/sistema.html?id=57c71daf1db18d0003045194. Accessed 27 May 2018
  85. Possatto FE, Broadhurst MK, Gray CA, Spach HL, Lamour MR (2016) Spatiotemporal variation among demersal ichthyofauna in a subtropical estuary bordering World Heritage-listed and marine protected areas: implications for resource management. Mar Freshw Res 68:703-717Google Scholar
  86. R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for statistical computing. Viena, Austria. http://www.R-project.org. Accessed 01 February 2017
  87. Ritz C, Streibig JC (2008) Nonlinear Regression with R. Springer, New York, NYGoogle Scholar
  88. Rocha C, Favaro LF, Spach HL (2002) Biologia Reprodutiva de Sphoeroides testudineus (Linnaeus) (Pisces, Osteichthyes, Tetraodontidae) da gamboa do Baguaçu, Baía de Paranaguá, Paraná, Brasil. Revta bras Zool 19:57–63Google Scholar
  89. Roff DA (1983) An allocation model of growth and reproduction in fish. Can J Fish Aquat Sci 40:1395–1404Google Scholar
  90. Sadovy de Mitcheson Y, Cornish A, Domeier M, Colin PL, Russell M, Lindeman KC (2008) A global baseline for spawning aggregations of reef fishes. Conserv Biol 22: 1233–1244Google Scholar
  91. Sadovy de Mitcheson Y, Colin PL (2012) Reef fish spawning aggregations: biology, research and management. Dordrecht: SpringerGoogle Scholar
  92. Schwartzkopf BD, Cowan JH (2017) Seasonal and sex differences in energy reserves of red snapper Lutjanus campechanus on natural and artificial reefs in the northwestern Gulf of Mexico. Fish Sci 83:13–22Google Scholar
  93. Secor DH (1999) Specifying divergent migrations in the concept of stock: The contingent hypothesis. Fish Res 43:13–34Google Scholar
  94. Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, Warner RR, Winters KB (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Nat Acad Sci U S A 105:8974–8979Google Scholar
  95. Simon T, Joyeux JC, Pinheiro HT (2013) Fish assemblages on shipwrecks and natural rocky reefs strongly differ in trophic structure. Mar Environ Res 90:55–65Google Scholar
  96. Souza-conceição JM, Spach HL, Costa MDP, Bordin D (2013) Variação espaço-temporal do ictioplâncton em praias estuarinas da baía da Babitonga, Santa Catarina, Brasil. Biotemas 26:129–141Google Scholar
  97. Sokal RR, Rohlf FJ (1981) Biometry. W. H. Freeman. New YorkGoogle Scholar
  98. Soeth M, Ribeiro GC, Spach HL, Andrade VK (2014) Variação temporal de peixes em diferentes fases ontogenéticas em uma praia abrigada da Baía Norte, Sul do Brasil. Neo Biol Conserv 9:27–41Google Scholar
  99. Soeth M, Ribeiro GC, Spach HL, Cattani AP, Andrade VK (2015) Comparison of the temporal and taxonomic patterns of ichthyofauna captured with a fyke net in two sheltered environments in southern Brazil. Lat Am J Aquat Res  43:107–122Google Scholar
  100. Thorson JT, Simpfendorfer CA (2009) Gear selectivity and sample size effects on growth curve selection in shark age and growth studies. Fish Res 98: 75–84Google Scholar
  101. Tsikliras AC, Antonopoulou E, Stergiou KI (2010) Spawning period of Mediterranean marine fishes. Rev Fish Biol Fisher 20:499–538Google Scholar
  102. UNIVALI/CTTMar (2010) Boletim estatístico da pesca industrial de Santa Catarina – Ano 2009 e panorama 2000 - 2009. Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar, Itajaí, SC. http://pmap-sc.acad.univali.br/sistema.html?id=597b9266d8597d4a00e6f9c4. Accessed 03 May 2016
  103. UNIVALI/CTTMar (2013a) Boletim estatístico da pesca industrial de Santa Catarina - Ano 2012. Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar, Itajaí, SC. http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/SC/est_2012_producao_pesqueira.pdf. Accessed 03 May 2016
  104. UNIVALI/CTTMar, 2013b. Boletim estatístico da pesca industrial de Santa Catarina – Ano 2011. Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar, Itajaí, SC. http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/SC/est_2011_producao_pesqueira.pdf. Accessed Accessed 03 May 2016
  105. van Overzee HMJ, Rijnsdorp AD (2014) Effects of fishing during the spawning period: implications for sustainable management. Rev Fish Biol Fisher 25:65–83Google Scholar
  106. Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá, EDUEMGoogle Scholar
  107. Veiga FA, Angulo RJ, Marone E, Brandini FP (2004) Shoreface sedimentology at Paraná middle coast. Bol Par Geoc 55:67–75Google Scholar
  108. Wartenberg R, Weyl OLF, Booth AJ, Winker H (2013) Life-history characteristics of an age-validated established invasive African sharptooth catfish, Clarias gariepinus, population in a warm-temperate African impoundment. Afr Zool 48:318–325Google Scholar
  109. Yamahira K, Conover DO (2002) Intra- vs. interspecific latitudinal variation in growth: adaptation to temperature or seasonality? Ecology 83:1252–1262Google Scholar
  110. Yamahira K (2004) How do multiple environmental cycles in combination determine reproductive timing in marine organisms? A model and test. Funct Ecol 18:4–15Google Scholar

Copyright information

© The Ichthyological Society of Japan 2018

Authors and Affiliations

  1. 1.Laboratório de Ecologia de Peixes, Centro de Estudos do MarUniversidade Federal do ParanáPontal do ParanáBrazil
  2. 2.Programa de Pós-Graduação em Sistemas Costeiros e OceânicosUniversidade Federal do ParanáPontal do ParanáBrazil
  3. 3.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR)PortoPortugal
  4. 4.Laboratório de Reprodução e Comunidade de Peixes, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil
  5. 5.Universidade Estadual Paulista “Júlio de Mesquita Filho”RegistroBrazil
  6. 6.Faculdade de Ciências da Saúde daUniversidade Fernando Pessoa (FCS/UFP)PortoPortugal

Personalised recommendations