Ichthyological Research

, Volume 63, Issue 2, pp 275–287 | Cite as

Genetic and morphological differences among the three species of the genus Rastrelliger (Perciformes: Scombridae)

  • Nozomu Muto
  • Ulysses B. Alama
  • Harutaka Hata
  • Armi May T. Guzman
  • Ramon Cruz
  • Arnold Gaje
  • Rex Ferdinand M. Traifalgar
  • Ryo Kakioka
  • Hirohiko Takeshima
  • Hiroyuki Motomura
  • Fumihito Muto
  • Ricardo P. Babaran
  • Satoshi Ishikawa
Full Paper

Abstract

Genetic and morphological differences among the three species of the genus Rastrelliger, viz. Rastrelliger kanagurta, Rastrelliger brachysoma and Rastrelliger faughni were clarified on the basis of 150 specimens collected from Panay Island, the Philippines, thereby providing fundamental information for accurate species identification. Specimens were separated into three distinct clades on the Bayesian phylogenetic tree constructed from mitochondrial DNA sequences, which largely corresponded to R. kanagurta, R. brachysoma and R. faughni according to the number of gill rakers and body depth. These results indicated that they were reproductively isolated, separate species. Further morphological differences were evident among the three clades, including separation by principal component analysis on 29 measurements. Apart from such interspecific divergences, intraspecific variations of several morphological characters relative to body size [fork length (FL)] were revealed for each species. Despite a slight increase in the number and the length of gill rakers with growth, R. faughni was invariably distinguished from the other two species by fewer and shorter gill rakers throughout the entire body size range. In stark contrast, some larger (FL > 200 mm) R. kanagurta individuals attained a proportionately deeper body that had been thought to be characteristic of R. brachysoma. Likewise, some smaller individuals of R. brachysoma (FL < 160 mm) were relatively shallow-bodied, and the body depth relative to FL was similar to that previously reported throughout the range of R. kanagurta. These results underpin the importance of considering ontogenetic variations when accurately identifying species based on morphological characters. Type specimens of six nominal species available in the present study that have been generally recognized as synonyms of R. kanagurta were examined, being shown to be identical with specimens considered here as R. kanagurta. In addition, intraspecific genetic variation of each species was briefly discussed in relation to hypothesized mechanisms that may have driven the lineage diversifications of marine organisms in the Indo-Pacific Ocean.

Keywords

Rastrelliger Morphology Ontogenetic variation mtDNA 

Supplementary material

10228_2015_498_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 42 kb)
10228_2015_498_MOESM2_ESM.docx (348 kb)
Supplementary material 2 (DOCX 348 kb)
10228_2015_498_MOESM3_ESM.csv (23 kb)
Supplementary material 3 (CSV 23 kb)
10228_2015_498_MOESM4_ESM.csv (9 kb)
Supplementary material 4 (CSV 9 kb)

References

  1. Akib NAM, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, Nor SAM (2015) High connectivity in Rastrelliger kanagurta: influence of historical signatures and migratory behaviour inferred from mtDNA Cytochrome b. PLoS ONE 10:e0119749Google Scholar
  2. Allen GR, Erdmann MV (2012) Reef fishes of the East Indies. vols I–III. Tropical Reef Research, PerthGoogle Scholar
  3. Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  4. Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) A marine Wallace’s line? Nature 406:692–693Google Scholar
  5. Bellwood DR, Renema W, Rosen BR (2012) Biodiversity hotspots, evolution and coral reef biogeography: a review. In: Gower DJ, Johnson K, Richardson J, Rosen B, Rüber L, Williams S (eds) Biotic evolution and environmental change in Southeast Asia. Cambridge Univ Press, New York, pp 216–245Google Scholar
  6. Bleeker P (1851) Over eenige nieuwe geslachten en soorten van Makreelachtige visschen van den Indischen Archipel. Natuurkundig Tijdschrift voor Nederlandsch Indië 1:341–372Google Scholar
  7. Bleeker P (1856) Beschrijvingen van nieuwe en weinig bekende vischsoorten van Amboina, verzameld op eene reis door den Molukschen Archipel gedaan in het gevolg van den Gouverneur Generaal Duymaer van Twist, in September en Oktober 1855. Acta Societatis Regiae Scientiarum Indo-Neêrlandicae 1:1–76Google Scholar
  8. Carpenter KE, Springer VG (2005) The center of the center of marine shore fish biodiversity: the Philippine Islands. Environ Biol Fish 72:467–480Google Scholar
  9. Carvalho GR, Hauser L (1994) Molecular genetics and stock concept in fisheries. Rev Fish Biol Fish 4:326–350Google Scholar
  10. Collette BB (2001) Scombridae. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the western central Pacific, vol 6. Bony fishes part 4 (Labridae to Latimeridae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. FAO, Rome, pp 3721–3756Google Scholar
  11. Collette BB, Nauen CE (1983) FAO species catalogue, vol 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO, RomeGoogle Scholar
  12. Collette BB, Di Natale A, Fox W, Juan Jorda M, Nelson R (2011a) Rastrelliger brachysoma. The IUCN Red List of Threatened Species 2011: e.T170318A6745895. http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T170318A6745895.en. Accessed 25 September 2015
  13. Collette BB, Di Natale A, Fox W, Juan Jorda M, Nelson R (2011b) Rastrelliger kanagurta. The IUCN Red List of Threatened Species 2011: e.T170328A6750032. http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T170328A6750032.en. Accessed 25 September 2015
  14. Collette BB, Di Natale A, Fox W, Juan Jorda M, Nelson R (2011c) Rastrelliger faughni. The IUCN Red List of Threatened Species 2011: e.T170324A6748697. http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T170324A6748697.en. Accessed 25 September 2015
  15. Cuvier G (1816) Le Règne Animal distribué d’après son organisation pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Les reptiles, les poissons, les mollusques et les annélides. Le Règne Animal 1:i–xviii + 1–532Google Scholar
  16. Day F (1871) On the fishes of the Andaman Islands. Proc Zool Soc London 1870:677–705Google Scholar
  17. Eschmeyer WN (ed) (2015) Catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 2 July 2015
  18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567Google Scholar
  19. FAO (2014) FAO yearbook. Fishery and Aquaculture Statistics. 2012. FAO, RomeGoogle Scholar
  20. FAO (2015a) Rastrelliger brachysoma (Bleeker, 1851). FAO species fact sheets. http://www.fao.org/fishery/species/2477/en. Accessed 2 July 2015
  21. FAO (2015b) Rastrelliger kanagurta (Cuvier, 1817). FAO species fact sheets. http://www.fao.org/fishery/species/2478/en. Accessed 2 July 2015
  22. Gaither MR, Rocha LA (2013) Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. J Biogeogr 40:1638–1648Google Scholar
  23. Gibbs RH, Collette BB (1967) Comparative anatomy and systematics of the tunas, genus Thunnus. Fish Bull 66:65–130Google Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  25. Hata H, Itou M, Kaburagi K, Motomura H (2015) First records of Rastrelliger kanagurta (Perciformes: Scombridae) from Tanegashima Island and mainland of Kagoshima, southern Japan. Nat Kagoshima 41:161–166Google Scholar
  26. Helfman GS (2009) Juveniles, adults, age, and growth. In: Helfman GS, Collette BB, Facey DE, Bowen BW (eds) The diversity of fishes: Biology, evolution, and ecology, second edn. John Wiley & Sons, Oxford, pp 149–165Google Scholar
  27. Houttuyn M (1782) Beschryving van eenige Japanse visschen, en andere zee-schepzelen. Verhandelingen, uitegegeeven door de Hollandsche Maatschappij der Wetenschappen, te Haarlem 20:311–350Google Scholar
  28. Ivanova NV, Zemlak TS, Hanner RH, Hebert PD (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548Google Scholar
  29. Jackson AM, Ambariyanto, Erdmann MV, Toha AHA, Stevens LA, Barber PH (2014) Phylogeography of commercial tuna and mackerel in the Indonesian Archipelago. Bull Mar Sci 90:471–492Google Scholar
  30. Jock CB (1973) Studies on the taxonomy and distribution of Ikan Kembong, Rastrelliger spp. in west Malaysia. Malaysia Agr J 49:143–153Google Scholar
  31. Jones S, Silas EG (1964) Mackerels from the Andaman Sea. Symp Ser Mar Biol Assoc India 1:255–282Google Scholar
  32. Jordan DS, Dickerson MC (1908) On a collection of fishes from Fiji, with notes on certain Hawaiian fishes. Proc US Nat Mus 34:603–617Google Scholar
  33. Konishi Y (2014) Rastrelliger kanagurta (Cuvier). In: Okiyama M (ed) An atlas of early stage fishes in Japan, second edn. Tokai Univ Press, Hadano, p 1391Google Scholar
  34. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948Google Scholar
  35. Lee SC (1993) Scombridae. In: Shen SC, Lee SC, Shao KT, Mok HK, Chen CH, Chen CT (eds) Fishes of Taiwan. National Taiwan University Press, Taipei, pp 554–559Google Scholar
  36. Lesson RP (1829) Scombre. In: de Saint-Vincent B (ed) Dictionnaire Classique de Histoire Naturelle, vol 15. Paris, pp 276–280Google Scholar
  37. Manacop BPR (1956) A preliminary systematic study of the Philippine chub mackerels, family Scombridae genera Pneumatophorus and Rastrelliger. Philippine J Fish 4:79–101Google Scholar
  38. Marr JC, Schaefer MB (1949) Definitions of body dimensions used in describing tunas. Fish Bull Fish Wild Serv 51:241–244Google Scholar
  39. Matsui T (1967) Review of the mackerel genera Scomber and Rastrelliger with description of a new species of Rastrelliger. Copeia 1967:71–83Google Scholar
  40. Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, Sato Y, Nishida M (2013) Evolutionary origin of the Scombridae (tunas and mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 8:e73535Google Scholar
  41. Mohsin AKM, Ambak MA (1996) Marine fishes and fisheries of Malaysia and neighbouring countries. Univ Pertanian Malaysia Press, Darul EhsanGoogle Scholar
  42. R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  43. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225Google Scholar
  44. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542Google Scholar
  45. Rüppell WPES (1835–38) Neue wirbelthiere zu der fauna von abyssinien gehörig. Fische des Rothen Meeres. Siegmund Schmerber, Frankfurt am MainGoogle Scholar
  46. Sabaj Pérez MH (2014) Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 5.0 (22 September 2014). American Society of Ichthyologists and Herpetologists, Washington, DC. http://www.asih.org/resources/standard-symbolic-codes-institutional-resource-collections-herpetology-ichthyology. Accessed 2 July 2015
  47. SEAFDEC (2015) Fishery statistics of Southeast Asia. http://fishstat.seafdec.org/Statistics/capture_p.php. Accessed 2 July 2015
  48. Tseng MC, Shiao JC, Hung YH (2011) Genetic identification of Thunnus orientalis, T. thynnus, and T. maccoyii by a cytochrome b gene analysis. Environ Biol Fish 91:103–115Google Scholar
  49. Veron JEN, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N (2009) Delineating the Coral Triangle. Galaxea J Coral Reef Studies 11:91–100Google Scholar
  50. Whitley GP (1944) New sharks and fishes from Western Australia. Aust Zool 10:252–273Google Scholar
  51. Woodland DJ (1983) Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bull Mar Sci 33:713–717Google Scholar

Copyright information

© The Ichthyological Society of Japan 2015

Authors and Affiliations

  • Nozomu Muto
    • 1
  • Ulysses B. Alama
    • 2
  • Harutaka Hata
    • 3
  • Armi May T. Guzman
    • 2
  • Ramon Cruz
    • 2
  • Arnold Gaje
    • 2
  • Rex Ferdinand M. Traifalgar
    • 2
  • Ryo Kakioka
    • 1
  • Hirohiko Takeshima
    • 1
  • Hiroyuki Motomura
    • 3
  • Fumihito Muto
    • 4
  • Ricardo P. Babaran
    • 2
  • Satoshi Ishikawa
    • 1
  1. 1.Research Institute for Humanity and NatureKyotoJapan
  2. 2.College of Fisheries and Ocean SciencesUniversity of the Philippines VisayasMiagaoPhilippines
  3. 3.The Kagoshima University MuseumKagoshimaJapan
  4. 4.School of Marine Science and TechnologyTokai UniversityShimizuJapan

Personalised recommendations