Ichthyological Research

, Volume 62, Issue 3, pp 368–373 | Cite as

No genetic deviation between two morphotypes of the snipefishes (Macroramphosidae: Macroramphosus) in Japanese waters

  • Taisuke Noguchi
  • Kay Sakuma
  • Tomo Kitahashi
  • Hajime Itoh
  • Yasunori Kano
  • Gento Shinohara
  • Jun Hashimoto
  • Shigeaki Kojima
Short Report


We examined morphological and molecular characteristics of individuals of Macroramphosus in Japanese waters (the East China Sea and the northwestern Pacific). Two morphotypes (M. scolopax-type and M. gracilis-type) that were differentiated based on 10 quantitative morphological characters were not supported by molecular analyses using nuclear and mitochondrial DNA markers, while a genetic deviation was observed between populations of Macroramphosus from the northwestern Pacific and the northeastern Atlantic. Macroramphosus scolopax-type and M. gracilis-type individuals are thought to be intraspecific morphotypes adapted to plankton and benthos feeding, respectively.


Macroramphosus Japanese waters Morphotype Molecular phylogeny 



We are grateful to Prof. K. Sasaki, Kochi University, and Mr. K. Shimizu and Mr. N. Yamawaki, Nagasaki University for providing the specimens. We thank the captains, officers, and crew members of T/V Nagasaki-maru of Nagasaki University and R/V Wakataka-maru of Tohoku National Fisheries Research Institute, Fisheries Research Agency, for their support in specimen sampling. We also thank Prof. J. Pabalo and the anonymous reviewers for many helpful comments on our manuscript. All experiments comply with the current laws of Japan.


  1. Anderson J (2003) Effects of diet-induced resource polymorphism on performance in arctic charr (Salvelinus alpinus). Evol Ecol Res 5:213–228Google Scholar
  2. Bandelt H-J, Foster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48Google Scholar
  3. Bilecenoglu M (2006) Status of the genus Macroramphosus (Syngnathiformes: Centriscidae) in the eastern Mediterranean Sea. Zootaxa 1273:55–64Google Scholar
  4. Bleeker P (1852) Bijdrage tot de kennis der ichthyologische fauna van Singapore. Natuurkundig Tijdschrift voor Nederlandsch Indië 3:51–86Google Scholar
  5. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7: 1255–1256Google Scholar
  6. Clarke TA (1984) Diet and morphological variation in snipefishes, presently recognized as Macroramphosus scolopax, from southeast Australia: evidence from two sexually dimorphic species. Copeia 1984:595–608Google Scholar
  7. Ehrich S (1976) On the taxonomy, ecology and growth of Macroramphosus scolopax (Linnaeus, 1758) (Pisces, Syngnathiformes) from the subtropical northeast Atlantic. Ber dt wiss Kommn Meeresforsch 24:251–266Google Scholar
  8. Ehrich S, John H-C (1973) The biology and ecology of Macrorhamphosid fishes off northwest Africa and suggestions to the age-composition of the adult stocks of the Great Meteor Seamount. “Meteor” Forsch-Ergebnisse Ser D 14:87–98Google Scholar
  9. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174Google Scholar
  10. Kristjánsson BK, Skúlason S, Noakes DLG (2002) Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biol J Linn Soc 76:247–257Google Scholar
  11. Kuranaga I, Sasaki K (2000) Larval development in a snipefish (Macroramphosus scolopax) from Japan with notes on eastern Pacific and Mediterranean Macroramphosus larvae (Gasterosteiformes, Macroramphosidae). Ichthyol Res 47:101–106 Google Scholar
  12. Lacepède BGE (1803) Histoire naturelle des poissons, vol 5. Chez Plassan, ParisGoogle Scholar
  13. Linnaeus C (1758) Systema naturae, 10th edition, vol 1. Laurentii Salvii, HolmiaeGoogle Scholar
  14. Lowe RT (1839) A supplement to a synopsis of fishes of Madeira. Proc Zool Soc Lond 7:76–92Google Scholar
  15. Matthiessen B, Fock HO, von Westernhagen H (2003) Evidence for two sympatric species of snipefishes Macroramphosus spp. (Syngnathiformes, Centriscidae) on Great Meteor Seamount. Helgol Mar Res 57:63–72Google Scholar
  16. Miyazaki E, Sasaki K, Mitani T, Ishida M, Uehara S (2004) The occurrence of two species of Macroramphosus (Gasterosteiformes: Macroramphosidae) in Japan: morphological and ecological observations on larvae, juveniles, and adults. Ichthyol Res 51:256–262Google Scholar
  17. Mohr E (1937) Revision of Centriscidae (Acanthopterygii, Centrisciformes). Dana Rep 13:1–69Google Scholar
  18. Okada Y, Suzuki K (1951) A review of the Macroramphosus fishes of Japan. Rep Fac Fish Pref Univ Mie 1:7–11Google Scholar
  19. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) vegan: Community Ecology Package. and Accessed 12 June 2014
  20. Olsson J, Eklöv P (2005) Habitat structure, feeding mode and morphological reversibility: factors influencing phenotypic plasticity in perch. Evol Ecol Res 7:1109–1123Google Scholar
  21. Ostellari L, Bargelloni L, Penzo E, Patarnello P, Patarnello T (1996) Optimization of single-strand conformation polymorphism and sequence analysis of the mitochondrial control region in Pagellus bogaraveo (Sparidae, Teleostei): Rationalized tools in fish population biology. Anim Genet 27:423–427Google Scholar
  22. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818Google Scholar
  23. R Development Core Group (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Google Scholar
  24. Robalo JI, Sousa-Santos C, Cabral H, Castilho R, Almada VC (2009) Genetic evidence fails to discriminate between Macroramphosus gracilis Lowe 1839 and Macroramphosus scolopax Linnaeus 1758 in Portuguese waters. Mar Biol 156:1733–1737Google Scholar
  25. Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501Google Scholar
  26. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Google Scholar
  27. Smith TB, Skúlason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu Rev Ecol Syst 27:111–133Google Scholar
  28. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Google Scholar
  29. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771Google Scholar
  30. Swanson BO, Gibb AC, Marks JC, Hendrickson DA (2003) Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid, Herichthys minckleyi. Ecology 84:1441–1446 Google Scholar
  31. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599Google Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680Google Scholar
  34. Whiteley AR (2007) Trophic polymorphism in a riverine fish: morphological, dietary, and genetic analysis of a mountain whitefish. Biol J Linn Soc 92:253–267Google Scholar

Copyright information

© The Ichthyological Society of Japan 2014

Authors and Affiliations

  • Taisuke Noguchi
    • 1
  • Kay Sakuma
    • 2
  • Tomo Kitahashi
    • 3
  • Hajime Itoh
    • 1
  • Yasunori Kano
    • 3
  • Gento Shinohara
    • 4
  • Jun Hashimoto
    • 5
  • Shigeaki Kojima
    • 1
  1. 1.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.National Research Institute of Far Seas FisheriesFisheries Research AgencyShizuokaJapan
  3. 3.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  4. 4.National Museum of Nature and ScienceTsukubaJapan
  5. 5.Faculty of FisheriesNagasaki UniversityNagasakiJapan

Personalised recommendations