Ichthyological Research

, Volume 62, Issue 2, pp 230–235 | Cite as

Genetic corroboration of Engraulis mordax larvae in the upper Gulf of California, a previously undescribed spawning habitat

  • Noé Díaz-Viloria
  • Laura Sánchez-Velasco
  • Miguel F. Lavín
  • Ricardo Perez-Enriquez
  • Sylvia P. A. Jiménez-Rosenberg
  • Victor M. Godínez
Short Report


Larvae of the Californian anchovy (Engraulis mordax) in the upper Gulf of California were identified. The finding was achieved with partial sequences of 16S rRNA (479 bp) and cytochrome c oxidase subunit I (580 bp) of mtDNA. High abundance of preflexion larvae (64 % of the sampling stations) in the northeastern upper Gulf, combined with environmental conditions (temperature: 17–18 °C; salinity: 35.8–36.0 g/kg; dissolved oxygen: 5.5–6.5 mL/L; chlorophyll a: 1.5–3.0 mg/m3), support an undescribed spawning habitat of E. mordax in the Gulf of California.


Californian anchovy molecular genetic identification upper Gulf of California spawning habitat 



We thank Manuel O. Nevárez-Martínez (Centro Regional de Investigaciones Pesqueras) and Peggy J. Turk-Boyer (Centro Intercultural de Estudios de Desiertos y Oceános) for donating specimens of Anchovia macrolepidota and Cetengraulis mysticetus. Adrián F. González Acosta and José De La Cruz Agüero of CICIMAR verified the identity of adult fish. Carlos Cabrera-Ramos of CICESE analyzed the physical data. N.D.V. and L.S.V. received funding from SIP projects 20140752 and 20140539 of IPN-CICIMAR. L.S.V. received financial support from SEP-CONACYT project (2010-105922) and a joint grant with M.F.L. of CICESE from the David and Lucille Packard Foundation (2010-36137). Two anonymous reviewers provided suggestions that improved the manuscript. Ira Fogel of CIBNOR provided extensive editing services.

Supplementary material

10228_2014_423_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3426 kb)
10228_2014_423_MOESM2_ESM.docx (3.6 mb)
Supplementary material 2 (DOCX 3644 kb)


  1. Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  2. Bakun A (1996) Patterns in the Ocean: Ocean Processes and Marine Population Dynamics. California Sea Grant/CIBNOR, La Jolla, CaliforniaGoogle Scholar
  3. Díaz-Viloria N, Sánchez-Velasco L, Perez-Enriquez R (2012) Recent population expansion in the evolutionary history of the Californian anchovy Engraulis mordax. Hidrobiológica 22:258–266Google Scholar
  4. Díaz-Viloria N, Sánchez-Velasco L, Perez-Enriquez R, Jiménez-Rosenberg SPA (2013) Molecular identification and morphological description of totoaba Totoaba macdonaldi and curvina Cynoscion reticulatus preflexion larvae (Perciformes: Sciaenidae). Ichthyol Res 60:390–395Google Scholar
  5. Green-Ruiz Y, Hinojosa-Corona A (1997) Study of spawning area of the Northern anchovy in the Gulf of California from 1990 to 1994, using satellite images of sea surface temperatures. J Plankton Res 8:957–968Google Scholar
  6. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B (Suppl) 270:S97–S99Google Scholar
  7. Inda-Díaz E, Sánchez-Velasco L, Lavín MF (2010) Three-dimensional distribution of small pelagic fish larvae (Sardinops sagax and Engraulis mordax) in a tidal-mixing front surrounding waters (Gulf of California). J Plankton Res 32:1241–1254Google Scholar
  8. IOC, SCOR, IAPSO (2010) The international thermodynamic equation of seawater–2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, ParisGoogle Scholar
  9. Ivanova NV, Dewaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002Google Scholar
  10. Kramer D, Ahlstrom H (1968). Distributional atlas of fish larvae in the California Current region: northern anchovy, Engraulis mordax Girard, 1951. California Cooperative Oceanic Fisheries Investigations Atlas, No. 9. Marine Research Committee, La Jolla, CaliforniaGoogle Scholar
  11. Lavín MF, Godínez VM, Alvarez LG (1998) Inverse-estuarine features of the Upper Gulf of California. Estuar Coast Shelf Sci 47:769–795Google Scholar
  12. Marinone SG (2012) Seasonal surface connectivity in the Gulf of California. Estuar Coast Shelf Sci 100:133–141Google Scholar
  13. Moser HG (1996) The early stages of fishes in the California Current region. California Cooperative Oceanic Fisheries Investigations Atlas, No. 33. Allen Press, Lawrence, KansasGoogle Scholar
  14. Pawlowicz R, Wright DG, Millero FJ (2010) The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater. Oc Sci Disc 7:773–836Google Scholar
  15. Palumbi SR, Martin PA, McMillan WO, Romano S, Stice L, Grabowski G (1991) The Simple Fool’s Guide to PCR, 2nd ed. University of Hawaii, HonoluluGoogle Scholar
  16. Richardson DE, Vanwye JD, Exum AM, Cowen RK, Crawford DL (2007) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes 7:199–207Google Scholar
  17. Sabatés A, Salat J, Raya V, Emelianov M (2013) Role of mesoscale eddies in shaping the spatial distribution of the Engraulis encrasicolus and Sardinella aurita larvae in the northwestern Mediterranean. J Mar Syst 111–112:108–119Google Scholar
  18. Sánchez-Velasco L, Lavín MF, Jiménez-Rosenberg SPA, Montes JM, Turk-Boyer PJ (2012) Larval fish habitats and hydrography in the Biosphere Reserve of the Upper Gulf of California (June 2008). Cont Shelf Res 33:89–99Google Scholar
  19. Sánchez-Velasco L, Lavín MF, Jiménez-Rosenberg SPA, Godínez VM, Santamaría-del-Angel E, Hernández-Becerril DU (2013) Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Deep-Sea Res Pt I 75:39–51Google Scholar
  20. Santiago-García MW, Marinone SG, Velasco-Fuentes OU (2014) Three-dimensional connectivity in the Gulf of California based on a numerical model. Prog Oceanogr 123:64–73Google Scholar
  21. Selvamani MJP, Degnan SM, Degnan BM (2001) Microsatellite genotyping of individual abalone larvae: parentage assignment in aquaculture. Mar Biotechnol 3:478–485Google Scholar
  22. Smith PE, Richardson SL (1979) Técnicas modelo para la prospección de huevos y larvas de peces pelágicos. FAO Documentos Técnicos de Pesca No. 175, RomeGoogle Scholar
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729Google Scholar
  24. Tawa A, Kobayakawa M, Yoshimura T, Mochioka N (2012) Identification of leptocephalus larvae of the tiger moray Scuticaria tigrina (Anguilliformes; Muraenidae) based on morphometric and genetic evidence. Ichthyol Res 59:378–383Google Scholar
  25. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA Barcoding of Australia’s fish species. Phil Trans R Soc. B 360:1847–1857Google Scholar
  26. Watson W, Sandknop M (1996) Engraulidae: Anchovies. In: Moser HG (ed) The Early Stages of Fishes in the California Current Region. CALCOFI Atlas 33, Allen Press, Lawrence, Kansas, pp 173–185Google Scholar
  27. Whitehead PJP, Rodríguez-Sánchez R (1995) Engraulidae. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Part 1, vol. 2. FAO, Rome, pp 1067–1087Google Scholar

Copyright information

© The Ichthyological Society of Japan 2014

Authors and Affiliations

  • Noé Díaz-Viloria
    • 1
  • Laura Sánchez-Velasco
    • 1
  • Miguel F. Lavín
    • 2
  • Ricardo Perez-Enriquez
    • 3
  • Sylvia P. A. Jiménez-Rosenberg
    • 1
  • Victor M. Godínez
    • 2
  1. 1.Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR)La PazMexico
  2. 2.Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
  3. 3.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico

Personalised recommendations