Ichthyological Research

, Volume 59, Issue 2, pp 104–112 | Cite as

A molecular timescale for the evolution of the African freshwater fish family Kneriidae (Teleostei: Gonorynchiformes)

  • Sébastien LavouéEmail author
  • Masaki Miya
  • Timo Moritz
  • Mutsumi Nishida
Full Paper


We re-examine the phylogenetic relationships of the family Kneriidae using whole mitogenome sequences across all four kneriid genera including the two recently recognized species of Cromeria (C. nilotica and C. occidentalis), and we provide a timescale to discuss the evolution of the family. The resulting phylogeny supports the monophyly of the family Kneriidae and the monophyly of the genus Cromeria. The two Cromeria species exhibit large genetic divergence (18.2%) that is comparable to those between Grasseichthys gabonensis and each two Cromeria species (16.9 and 19.0%). The three paedomorphic kneriid species (C. occidentalis, C. nilotica and G. gabonensis) do not form a monophyletic group, but the alternative hypothesis in which they are monophyletic cannot be statistically rejected. Two alternative relaxed molecular-clock Bayesian analyses, differing on how we time-calibrated the phylogenetic tree using the fossil record, support a Late Jurassic or Late Cretaceous origin of the African freshwater gonorynchiforms. The early diversification of the family Kneriidae is concomitant with the reductions or loss of several morphological characters that took place in a relatively short time interval of about 12–21 million years either during the Eocene or at the end of the Late Cretaceous.


Mitogenomics Evolution Paedomorphism Miniaturization 



This study was supported by research grant nos. 16570082, 15380131 and 19207007 from the Japan Society for the Promotion of Science. SL completed this work while he was supported by a postdoctoral fellowship of the Taiwan’s National Science Council (NSC100-2811-M-002-069). We warmly thank John P. Sullivan, John P. Friel and Tesfaye Melak for their help during field survey in Ethiopia. The collection and exportation permits were obtained with the assistance of Abebe Getahun (Addis Ababa University). An early draft of this manuscript was significantly improved by comments of Casey B. Dillman (Virginia Institute of Marine Science), Shigeru Shirai (IR section editor) and two anonymous reviewers. Any experiments in this study complied with the current laws of Japan where they were performed.


  1. Benton MJ, Ayala FJ (2003) Dating the tree of life. Science 300:1698–1700PubMedCrossRefGoogle Scholar
  2. Bird NC, Mabee PM (2003) Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228:337–357PubMedCrossRefGoogle Scholar
  3. Britz R, Conway KW (2009) Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J Morphol 270:389–412PubMedCrossRefGoogle Scholar
  4. Britz R, Moritz T (2007) Reinvestigation of the osteology of the miniature African freshwater fishes Cromeria and Grasseichthys (Teleostei, Gonorynchiformes, Kneriidae), with comments on kneriid relationships. Mitt Mus Natur Be Zool Reihe 83:3–42Google Scholar
  5. Britz R, Conway KW, Rüber L (2009) Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp. Proc R Soc Lond B 276:2179–2186CrossRefGoogle Scholar
  6. Cavin L (2008) Palaeobiogeography of Cretaceous bony fishes (Actinistia, Dipnoi and Actinopterygii). In: Cavin L, Longbottom A, Richter M (eds) Fishes and the break-up of Pangaea. Special Publications 295. Geological Society, London, pp 165–183Google Scholar
  7. Cubbage CC, Mabee PM (1996) Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J Morphol 229:121–160CrossRefGoogle Scholar
  8. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  9. Eschmeyer WN, Fricke R (2011) Catalog of fishes, electronic version. Accessed 13 Dec 2011
  10. Fara E, Gayet M, Taverne L (2010) The fossil record of Gonorynchiformes. In: Grande T, Poyato-Ariza F, Diogo R (eds) Gonorynchiformes and ostariophysan relationships: a comprehensive review. Science Publishers, Enfield, pp 173–226CrossRefGoogle Scholar
  11. Grande T (1994) Phylogeny and paedomorphosis in an African family of freshwater fishes (Gonorynchiformes: Kneriidae). Fieldiana 78:1–20Google Scholar
  12. Grande T, Poyato-Ariza F (1999) Phylogenetic relationships of fossil and recent gonorynchiform fishes (Teleostei: Ostariophysi). Zool J Linn Soc London 125:197–238CrossRefGoogle Scholar
  13. Grande T, Poyato-Ariza F, Diogo R (2010) Gonorynchiformes and ostariophysan relationships: a comprehensive review. Science Publishers, EnfieldCrossRefGoogle Scholar
  14. Greenwood PH, Rosen DE, Weitzman SH, Myers GS (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull Am Mus Nat Hist 131:339–456Google Scholar
  15. Hanken J, Wake DB (1993) Miniaturization of body-size–organismal consequences and evolutionary significance. Ann Rev Ecol Syst 24:501–519CrossRefGoogle Scholar
  16. Howes GJ (1985) Cranial muscles of gonorynchiform fishes, with comments on generic relationships. Bull Br Mus Nat Hist (Zool) 49:273–303Google Scholar
  17. Inoue JG, Kumazawa Y, Miya M, Nishida M (2009) The historical biogeography of the freshwater knifefishes using mitogenomic approaches: a Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha). Mol Phylogenet Evol 51:486–499PubMedCrossRefGoogle Scholar
  18. Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro N, Nishida M (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for higher-level relationships within the Otocephala. Mol Phylogenet Evol 37:165–177PubMedCrossRefGoogle Scholar
  19. Lavoué S, Miya M, Poulsen JY, Møller PR, Nishida M (2008) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol Phylogenet Evol 47:1111–1121PubMedCrossRefGoogle Scholar
  20. Lawver LA, Dalziel IWD, Gahagan LM (2007) Plates 2006—atlas of plate reconstructions (750 Ma to present day). University of Texas, Institute for Geophysics, AustinGoogle Scholar
  21. Lenglet G (1974) Contribution à l’étude ostéologique des Kneriidae. Ann Soc R Zool Bel 22:52–103Google Scholar
  22. Löytynoja A, Milinkovitch MC (2003) A hidden Markov model for progressive multiple alignment. Bioinformatics 19:1505–1513PubMedCrossRefGoogle Scholar
  23. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis, ver. 2.72.
  24. Moritz T, Britz R, Linsenmair KE (2006) Cromeria nilotica and Cromeria occidentalis, two valid species of the African freshwater fish family Kneriidae (Teleostei: Gonorynchiformes). Ichthyol Explor Freshwat 17:65–72Google Scholar
  25. Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11:177PubMedCrossRefGoogle Scholar
  26. Peng ZG, He SP, Wang J, Wang W, Diogo R (2006) Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): a new insight. Gene 370:113–124PubMedCrossRefGoogle Scholar
  27. Saitoh K, Sado T, Doosey MH, Bart HL, Inoue JG, Nishida M, Mayden RL, Miya M (2011) Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 161:633–662CrossRefGoogle Scholar
  28. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508PubMedCrossRefGoogle Scholar
  29. Shimodaira H (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat 32:2616–2641CrossRefGoogle Scholar
  30. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247PubMedCrossRefGoogle Scholar
  31. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  32. Yamanoue Y, Miya M, Inoue JG, Matsuura K, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst 81:29–39PubMedCrossRefGoogle Scholar

Copyright information

© The Ichthyological Society of Japan 2011

Authors and Affiliations

  • Sébastien Lavoué
    • 1
    • 2
    Email author
  • Masaki Miya
    • 3
  • Timo Moritz
    • 4
  • Mutsumi Nishida
    • 2
  1. 1.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  3. 3.Natural History Museum and Institute, ChibaChibaJapan
  4. 4.German Oceanographic MuseumStralsundGermany

Personalised recommendations