Ichthyological Research

, Volume 54, Issue 4, pp 323–332 | Cite as

Mitochondrial genome and a nuclear gene indicate a novel phylogenetic position of deep-sea tube-eye fish (Stylephoridae)

  • Masaki Miya
  • Nancy I. Holcroft
  • Takashi P. Satoh
  • Motoomi Yamaguchi
  • Mutsumi Nishida
  • E.O. Wiley
FULL PAPER

Abstract

The rare, monotypic deep-sea fish family Stylephoridae has long been considered a member of the order Lampridiformes (opahs, velifers, ribbonfishes), and no systematic ichthyologist has questioned its placement within the order for over 80 years. Recently three individuals of Stylephorus chordatus were collected from different oceans, and we sequenced the whole mitochondrial genome and a partial nuclear recombination activating gene 1 (RAG1) gene sequences for each specimen. We aligned these sequences with those available from higher teleosts, including representative lampridiforms, and constructed two separate datasets from the sequences. The resulting trees derived from partitioned Bayesian analyses strongly indicated that S. chordatus is not a lampridiform but is closely related to the order Gadiformes (cod and their relatives). Lampridiformes is diagnosed on the basis of four synapomorphies, three of which are correlated with the rare and possibly unique ability to extend both the maxilla and premaxilla as a unit during feeding. Stylephorus also possesses such unique ability, but lacks two and possibly three of the four synapomorphies, suggesting that further morphological analysis is needed. Considering its unique morphologies with no indication of affinities within Gadiformes (or any other presently recognized order), the present results warrant a recognition of the new order for S. chordatus in fish systematics.

Key words

Lampridiformes Gadiformes Cods Molecular systematics New order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke, TA, Wagner, PJ 1976Vertical distribution and other aspects of the ecology of certain mesopelagic fishes taken near HawaiiFish Bull74635645Google Scholar
  2. Greenwood, PH, Rosen, DE, Weitzman, SH, Myers, GS 1966Phyletic studies of teleostean fishes, with a provisional classification of living formsBull Am Mus Nat Hist131339456Google Scholar
  3. Holcroft, NI 2004A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 geneMol Phylogenet Evol32749760PubMedCrossRefGoogle Scholar
  4. Holcroft, NI 2005A molecular analysis of the interrelationships of tetraodontiform fishes (Acanthomorpha: Tetraodontiformes)Mol Phylogenet Evol34525544PubMedCrossRefGoogle Scholar
  5. Hulley, PA 1986StylephoridaeSmith, MMHeemstra, PC eds. Smith's sea fishesSpringer-VerlagBerlin406Google Scholar
  6. Kass, RE, Raftery, AE 1995Bayes factorsJ Am Stat Assoc90773795CrossRefGoogle Scholar
  7. Miya, M, Nishida, M 1999Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishesMar Biotechnol1416426PubMedCrossRefGoogle Scholar
  8. Miya, M, Nishida, M 2000Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterionMol Phylogenet Evol17437455PubMedCrossRefGoogle Scholar
  9. Miya, M, Takeshima, H, Endo, H, Ishiguro, NB, Inoue, JG, Mukai, T, Satoh, TP, Yamaguchi, M, Kawaguchi, A, Mabuchi, K, Shirai, SM, Nishida, M 2003Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequencesMol Phylogenet Evol26121138PubMedCrossRefGoogle Scholar
  10. Miya, M, Satoh, TP, Nishida, M 2005The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequencesBiol J Linn Soc85289306CrossRefGoogle Scholar
  11. Nelson, JS 2006Fishes of the world4th ednWileyNew YorkGoogle Scholar
  12. Oelschläger, H 1976On the evolution and ecological adaptations of the AllotriognathiRev Trav Inst Peches Marit40691694Google Scholar
  13. Oelschläger, H 1983Vergleichende und funktionelle anatomie der Allotriognathi (=Lampridiformes), ein beitrag zur evolutionsmorphologie der knochenfischeAbh Senckenb Natforsch Ges5411127Google Scholar
  14. Olney, JE 1984Lampridiformes: development and relationshipsMoser, HGRichards, WJCohen, DMFahay, MPKendall, AW,JrRichardson, SL eds. Ontogeny and systematics of fishes. Special publication no. 1American Society of Ichthyologists and HerpetologistsLawrence, KS368379Google Scholar
  15. Olney, JE, Johnson, GD, Baldwin, CC 1993Phylogeny of lampridiform fishesBull Mar Sci52137169Google Scholar
  16. Phillips, MJ, Penny, D 2003The root of the mammalian tree inferred from whole mitochondrial genomesMol Phylogenet Evol28171185PubMedCrossRefGoogle Scholar
  17. Pietsch, TW 1978The feeding mechanism of Stylephorus chordatus (Teleostei: Lampridiformes): functional and ecological implicationsCopeia1978255262CrossRefGoogle Scholar
  18. Regan, CT 1907On the anatomy, classification, and systematic position of the teleostean fishes of the suborder AllotriognathiProc Zool Soc Lond1907634643Google Scholar
  19. Regan, CT 1924The morphology of a rare oceanic fish, Stylephorus chordatus, Shaw; based on specimens collected in the Atlantic by the “Dana” ExpeditionsProc R Soc Lond B Biol Sci3193207CrossRefGoogle Scholar
  20. Ronquist, F, Huelsenbeck, JP 2003MrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics1915721574PubMedCrossRefGoogle Scholar
  21. Saitoh, K, Sado, T, Mayden, RL, Hanzawa, N, Nakamura, K, Nishida, M, Miya, M 2006Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence towards resolution of higher-level relationships of the world's largest freshwater-fish clade based on 59 whole mitogenome sequencesJ Mol Evol63826841PubMedCrossRefGoogle Scholar
  22. Shaw, G 1791Description of the Stylephorus chordatus, a new fishTrans Linn Soc London19092Google Scholar
  23. Starks, EC 1908The characters of Atelaxia, a new suborder of fishesBull Mus Comp Zool521722Google Scholar
  24. Ward, RD, Zemlak, TS, Innes, BH, Last, PR, Hebert, PDN 2005DNA barcoding Australia's fish speciesPhilos Trans R Soc B36018471857CrossRefGoogle Scholar
  25. Wiley, EO, Johnson, GD, Dimmick, WW 1998The phylogenetic relationships of lampridiform fishes (Teleostei: Acanthomorpha), based on a total evidence analysis of morphological and molecular dataMol Phylogenet Evol10417425PubMedCrossRefGoogle Scholar
  26. Yang, Z 1994Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methodsJ Mol Evol39306314PubMedCrossRefGoogle Scholar

Copyright information

© The Ichthyological Society of Japan 2007

Authors and Affiliations

  • Masaki Miya
    • 1
  • Nancy I. Holcroft
    • 2
    • 3
  • Takashi P. Satoh
    • 4
  • Motoomi Yamaguchi
    • 5
  • Mutsumi Nishida
    • 4
  • E.O. Wiley
    • 3
    • 6
  1. 1.Department of ZoologyNatural History Museum and InstituteChibaJapan
  2. 2.Johnson County Community CollegeOverland ParkUSA
  3. 3.Natural History MuseumThe University of KansasLawrenceUSA
  4. 4.Ocean Research InstituteUniversity of TokyoTokyoJapan
  5. 5.Center for Developmental BiologyRIKEN Kobe InstituteKobeJapan
  6. 6.Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceUSA

Personalised recommendations