Ichthyological Research

, Volume 53, Issue 4, pp 323–329 | Cite as

Mitochondrial phylogeny reveals the artificial introduction of the pale chub Zacco platypus (Cyprinidae) in Taiwan

  • Gwo-Chin Ma
  • Katsutoshi Watanabe
  • Hsien-Shao Tsao
  • Hon-Tsen Yu
Full paper


The presence of the pale chub Zacco platypus (Japanese name, Oikawa) in Taiwan has been suggested to be a result of its inadvertent introduction from Lake Biwa in Japan in the 1980s in conjunction with the Japanese Ayu, Plecoglossus altivelis altivelis, which was released several times into the Tamsui River to restock the extinct Ayu population of Taiwan. However, it is also possible that Z. platypus is native to Taiwan and has not been previously described for reasons of its narrow range. Knowledge of the colonizing history of Z. platypus is of considerable importance because it provides insight into the evolutionary process and, hence, impacts management decisions regarding this species in Taiwan. A portion of the mitochondrial D-loop was sequenced for 77 specimens from five populations of Z. platypus from Japan and Taiwan. A total of 22 haplotypes were identified, and nucleotide divergence among haplotypes ranged from 0.20% to 2.82%. Haplotype diversity was high in all populations examined, with a range from 0.718 in the Tagiri River population to 0.909 in the Lake Biwa population. Phylogenetic and statistical parsimony analyses of the molecular data revealed a close genetic relationship between Taiwanese and Japanese Z. platypus and supported the previous report that the Taiwanese Z. platypus originated in Lake Biwa in Japan.

Key words

Zacco platypus Pale chub Taiwan Introduced species Mitochondrial DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bănărescu, P 1968Revision of the genera Zacco and Opsariichthys (Pisces, Cyprinidae)Věst Čs Spol Zool32305311Google Scholar
  2. Berrebi, P, Boissin, E, Fang, F, Cattaneo-Berrebi, G 2005Intron polymorphism (EPIC-PCR) reveals phylogeographic structure of Zacco platypus in China: a possible target for aquaculture developmentHeredity94589598CrossRefPubMedGoogle Scholar
  3. Chang, Y-C, Chen, I-S 2005A photographic guide to the inland-water fishes of TaiwanSueichan PressTaiwanGoogle Scholar
  4. Chen, YY 1982A revision of opsariichthine cyprinid fishesOceanol Limnol Sin13293299Google Scholar
  5. Clement, DO, Posada, D, Crandall, K 2000TCS: a computer program to estimate gene genealogiesMol Ecol916571660CrossRefPubMedGoogle Scholar
  6. Hasegawa, M, Kishino, K, Yano, T 1985Dating the human-ape splitting by a molecular clock of mitochondrial DNAJ Mol Evol32160174CrossRefGoogle Scholar
  7. Kimura, M 2000Paleogeography of the Ryukyu IslandsTropics10524CrossRefGoogle Scholar
  8. Kumar, S, Tamura, K, Nei, M 2004MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignmentBrief Bioinform5150163CrossRefPubMedGoogle Scholar
  9. Liu, F-K 1995The cultivation of freshwater fish (X)-AyuHung, P-F eds. Taiwan agriculture encyclopedia, 1st edn (in Chinese)Harvest PressTaiwanGoogle Scholar
  10. Ma, G-C, Tsao, H-S, Lu, H-P, Yu, H-T 2006AFLPs congruent with morphological differentiation of Asian common minnow Zacco (Pisces: Cyprinidae) in TaiwanZool Scr35341351CrossRefGoogle Scholar
  11. Ming, MS 1991Systematic study on the genus Zacco (Pisces, Cyprinidae). PhD thesisJen-Heh UniversityKoreaGoogle Scholar
  12. Mori, S, Nagoshi, M 1989Zacco platypus (in Japanese)Kawanabe, HMizuno, N eds. Freshwater fishes of JapanYama-keiTokyoGoogle Scholar
  13. Nakabo, T 1993Fishes of Japan with pictorial keys to the species (in Japanese)Tokai University PressJapanGoogle Scholar
  14. Nei, M, Maruyama, T, Chakraborty, R 1975The bottleneck effect and genetic variability in populationsEvolution29110CrossRefGoogle Scholar
  15. Perdices, A, Cunha, C, Coelho, MM 2004Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jiang (Yangtze) drainage inferred from cytochrome b sequencesMol Phylogenet Evol31192203CrossRefPubMedGoogle Scholar
  16. Posada, D, Crandall, KA 1998Modeltest: testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  17. Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular cloning: a laboratory manualCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  18. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  19. Shen, SC, Lee, SC, Shao, KT, Mok, HK, Chen, CF, Chen, CT 1993Fishes of Taiwan (in Chinese)National Taiwan UniversityTaipeiGoogle Scholar
  20. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony and other methods, version 4.0b10. Sinauer Associates, Sunderland, MAGoogle Scholar
  21. Templeton, AR, Crandall, KA, Sing, CF 1992A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimationGenetics132619633PubMedGoogle Scholar
  22. Tzeng C-S (1986) The freshwater fishes of Taiwan (in Chinese). The Provincial Education Agency of Taiwan, TaiwanGoogle Scholar

Copyright information

© The Ichthyological Society of Japan 2006

Authors and Affiliations

  • Gwo-Chin Ma
    • 1
  • Katsutoshi Watanabe
    • 2
  • Hsien-Shao Tsao
    • 3
  • Hon-Tsen Yu
    • 1
  1. 1.Institute of Zoology and Department of Life ScienceNational Taiwan UniversityTaipeiROC
  2. 2.Department of Zoology, Division of Biological Science, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Taipei ZooTaipeiROC

Personalised recommendations