Ichthyological Research

, Volume 53, Issue 3, pp 254–263 | Cite as

Cranial morphology of Ateleopus japonicus (Ateleopodidae: Ateleopodiformes), with a discussion on metamorphic mouth migration and lampridiform affinities

  • Kunio SasakiEmail author
  • Yoshimi Tanaka
  • Yohko Takata
Full paper


The cranial osteology and myology in the ateleopodiform Ateleopus japonicus were studied. Many free bony ossicles constitute the cephalic lateral line canals and are separated from the neurocranial roof by thick gelatinous tissue. The preoperculomandibular canal is unique in having a direct connection with the infraorbital canal owing to strong reduction in the size of the preoperculum. The neurocranium is largely cartilaginous, with 6 chondrocranial and 1 dermal element being absent (or not undergoing ossification). The left and right frontals are separated by a deep groove into which a long, mobile rostral cartilage is deeply inserted. Five pairs of cartilages, including 2 pairs of menisci, are associated with the ethmoid region, allowing premaxillary protrusion without involving maxillary rotation. The levator operculi is well developed and likely generates the primary force for depressing the lower jaw. The large interhyal is tightly attached to the entire ventral margin of the operculum, and the two elements appear to function as a single unit in mouth opening. The oral cavity is large because of the posterior position of the branchial arches [the last (5th) arch is situated below the 3rd vertebra]. In pelagic individuals the head is flat with a terminal mouth and straight parasphenoid shaft, whereas in small, benthopelagic individuals the head is rounded with an inferior mouth and bent parasphenoid shaft. “Bending” of the parasphenoid with a dorsally elevated apex is considered the result of the posterior migration of the mouth during the habitat shift. Ateleopodiform characters are discussed phylogenetically and the deep insertion of the rostral cartilage into an open space in the ethmoid region is suggested as a synapomorphy of the order and Lampridiformes.

Key words

Ateleopodiformes Ateleopus japonicus Morphology Cranium Lampridiformes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, RM 1967The functions and mechanisms of the protrusive upper jaws of some acanthopterygian fishesJ Zool Lond1514364CrossRefGoogle Scholar
  2. Amaoka, K, Kobayashi, T 2003Two large postlarvae of Ateleopus japonicus (Osteichthyes: Ateleopodidae) collected from Senzaki Bay, Yamaguchi JapanSpec Divers8107117Google Scholar
  3. Barnard, KH 1948Further notes on South African marine fishesAnn South African Mus36341406pls 9–13Google Scholar
  4. Bleeker, P 1853Nalezingen op de ichthyologie van JapanVerh Batav Genootsch Kunst Wet25156Google Scholar
  5. Boulenger, GA 1904Fishes (systematic accounts of Teleostei)Harmer, SFShipley, AE eds. The Cambridge natural history, series 7MacmillanLondon541727Google Scholar
  6. Charter, SR, Moser, HG 1996LampridiformesMoser, HG eds. The early stages of fishes in California Current region. CalCOFI Atlas No 33Allen PressLawrence, KS659677Google Scholar
  7. Fujita, K 1990The caudal skeleton of teleostean fishesTokai University PressTokyoGoogle Scholar
  8. Howell Rivero, L 1935The family Ateleopodidae and its West Indian formMem Soc Cubana Hist Nat9116pl 8Google Scholar
  9. Ikeda, T, Mito, S 1988Key to eggs and hatched larvaeOkiyama, M eds. An atlas of the early stage fishes in Japan (in Japanese)Tokai University PressTokyo9991083Google Scholar
  10. Imamura, H 1996Phylogeny of the family Platycephalidae and related taxa (Pisces: Scorpaeniformes)Spec Divers1123233Google Scholar
  11. Johnson, GD 1992Monophyly of the euteleostean clades—Neoteleostei, Eurypterygii, and CtenosquamataCopeia1992825CrossRefGoogle Scholar
  12. Johnson, GD, Patterson, C 1993Percomorph phylogeny: a survey of acanthomorphs and a new proposalBull Mar Sci52554625Google Scholar
  13. Kapoor, AS 1970Development of dermal bones related to sensory canals of the head in fishes Ophicephalus punctatus Bloch (Ophicephalidae) and Wallago attu B. & Schn. (Siluridae)Zool J Linn Soc496997Google Scholar
  14. Lauder, GV 1979Feeding mechanisms in primitive teleosts and in the halecomorph fish Amia calva J Zool Lond187543578Google Scholar
  15. Lekander, B 1949The sensory line system and the canal bones in the head of some OstariophysiActa Zool301131CrossRefGoogle Scholar
  16. Miya, M, Takeshima, H, Endo, H, Ishiguro, NB, Inoue, JG, Mukai, T, Satoh, TP, Yamaguchi, M, Kawaguchi, A, Mabuchi, K, Shirai, SM, Nishida, M 2003Major patterns of higher teleostean phylogeny: a new perspective based on 100 complete mitochondrial DNA sequencesMol Phylogenet Evol26121138PubMedCrossRefGoogle Scholar
  17. Nelson, JS 1994Fishes of the world3rd ednWileyNew YorkGoogle Scholar
  18. Olney, JE 1984Lampridiformes: development and relationshipsMoser, HGCohen, DMFahay, MPKendall, AW,JrRichardson, SL eds. Ontogeny and systematics of fishes. Special publication 1American Society of Ichthyologists and HerpetologistsLawrence, KS368379Google Scholar
  19. Olney, JE, Johnson, GD, Baldwin, CC 1993Phylogeny of lampridiform fishesBull Mar Sci52137169Google Scholar
  20. Pelster, B 1997Buoyancy at depthRandall, DJFarrell, AP eds. Deep-sea fishesAcademic PressNew York195238Google Scholar
  21. Potthoff, T 1984Clearing and staining techniquesMoser, HGCohen, DMFahay, MPKendall, AW,JrRichardson, SL eds. Ontogeny and systematics of fishes. Special publication 1American Society of Ichthyologists and HerpetologistsLawrence, KS3537Google Scholar
  22. Potthoff, T, Tellock, JA 1993Osteological development of the snook, Centropomus undecimalis (Teleostei, Centropomidae)Bull Mar Sci52669716Google Scholar
  23. Regan, TW 1911The anatomy and classification of the teleostean fishes of the order IniomiAnn Mag Nat Hist8120133Google Scholar
  24. Reno, HW 1961The infraorbital canal, its lateral-line ossicles and neuromasts in the minnows Notropis volucellus and N. buchanani Copeia1961403413Google Scholar
  25. Rosen, DE 1973Interrelationships of higher euteleostean fishesGreenwood, PHMiles, RSPatterson, C eds. Interrelationships of fishesLinnean Society of LondonLondon397513Google Scholar
  26. Rosen, DE, Patterson, C 1969The structure and relationships of the paracanthopterygian fishesBull Am Mus Nat Hist141357474pls 1–27Google Scholar
  27. Springer VG, Johnson GD (2004) Study of the dorsal gill-arch musclature of teleostome fishes, with special reference to the Actinopterygii. Bull Biol Soc Wash 11:i–vi + 1–235, pls 1–205Google Scholar
  28. Stensiö, EA 1947The sensory lines and dermal bones of the cheek in fishes and amphibiansK Sevenska Vetensk Akad Handl241195Google Scholar
  29. Stiassny, MLJ 1986The limits and relationships of the acanthomorph teleostsJ Zool Lond (B)1986411460Google Scholar
  30. Stiassny, MLJ 1996Basal ctenosquamate relationships and the interrelationships of the myctophiform (scopelomorph) fishesStiassny, MLJParenti, LRJohnson, GD eds. Interrelationships of fishesAcademic PressNew York405426Google Scholar
  31. Takata, Y, Sasaki, K 2005Branchial structures in the Gasterosteiformes, with special reference to myology and phylogenetic implicationsIchthyol Res523349CrossRefGoogle Scholar
  32. Webb, JF 1989Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishesBrain Behav Evol333453PubMedGoogle Scholar
  33. Westneat, MW 1990Feeding mechanics of teleost fishes (Labridae; Perciformes): a test of four-bar linkage modelsJ Morphol205269295CrossRefGoogle Scholar
  34. Winterbottom, R 1974A descriptive synonymy of the striated muscles of the TeleosteiProc Acad Nat Sci Phila125225317Google Scholar

Copyright information

© The Ichthyological Society of Japan 2006

Authors and Affiliations

  1. 1.Laboratory of Marine Biology, Faculty of ScienceKochi UniversityKochiJapan

Personalised recommendations